Abstract
Bauxite residue (Red mud) is produced in alumina plants by the Bayer process in which Al-containing minerals are dissolved in hot NaOH. The global residue inventory reached an estimated 3.5 billion tons in 2014, increasing by approximately 120 million tons per annum. The appropriate management of bauxite residue is becoming a global environmental concern following increased awareness of the need for environmental protection. Establishment of a vegetation cover is the most promising way forward for the management of bauxite residue, although its physical and chemical properties can limit plant growth due to high alkalinity and salinity, low hydraulic conductivity, trace element toxicity (Al and Fe), and deficiencies in organic matter and nutrition concentrations. This paper discusses the various revegetation and rehabilitation strategies. Studies of the rehabilitation of bauxite residues have mainly focused on two approaches, amelioration of the surface layer and screening of tolerant plants and soil microorganisms. Amendment with gypsum can reduce the high alkalinity and salinity, promote soil aggregation, and increase the hydraulic conductivity of bauxite residues. Organic matter can provide a source of plant nutrients, form stable complexes with metal cations, promote hydraulic conductivity, stabilize soil structure, and provide an energy source for soil organisms. Tolerant plants and microorganisms such as halophytes and alkaliphilic microbes show the greatest potential to ameliorate bauxite residues. However, during restoration or as a result of natural vegetation establishment, soil formation becomes a critical issue and an improved understanding of the various pedogenic processes are required, and future direction should focus on this area.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Akinci A, Artir R (2008) Characterization of trace elements and radionuclides and their risk assessment in red mud. Mater Charact 59:417–421
Alshaal T, Domokos-Szabolcsy É, Márton L, Czakó M, Kátai J, Balogh P, Elhawat N, El-Ramady H, Fári M (2013) Phytoremediation of bauxite-derived red mud by giant reed. Environ Chem Lett 11:295–302
Alvarez J, Ordonez S, Rosal R, Sastre H, Diez FV (1999) A new method for enhancing the performance of red mud as a hydrogenation catalyst. Appl Catal A Gen 180:399–409
Atasoy A (2005) An investigation on characterization and thermal analysis of the Aughinish red mud. J Therm Anal Calorim 81:357–361
Banerjee SK (2003) Conversion of conventional wet disposal of red mud into Thickened Tailing Disposal (TTD) at Nalco Alumina Refinery, Damanjodi. Light Metals 125–132
Banning NC, Phillips IR, Jones DL, Murphy DV (2011) Development of microbial diversity and functional potential in bauxite residue sand under rehabilitation. Restor Ecol 19:78–87
Bell LC, Meecham JR (1978) Reclamation of alumina refinery wastes at Gladstone, Australia. Reclamation Review 1:129–137
Buchanan SJ et al (2010) Influence of texture in bauxite residues on void ratio, water holding characteristics, and penetration resistance. Geoderma 158(3–4):421–426
Bucher MA et al. (1985) The effects of gypsum and sewage sludge on plant growth and nutrition on alkaline, saline, fine-textured bauxite residue. Diss. Duke University
Chauhan S, Ganguly A (2011) Standardizing rehabilitation protocol using vegetation cover for bauxite waste (red mud) in eastern India. Ecol Eng 37:504–510
Cooling DJ (2007) Improving the sustainability of residue management practices—Alcoa World Alumina Australia. Paste and Thickened Tailings: A Guide, 3–16
Courtney R, Kirwan L (2012) Gypsum amendment of alkaline bauxite residue—plant available aluminium and implications for grassland restoration. Ecol Eng 42:279–282
Courtney RG, Timpson JP (2004) Nutrient status of vegetation grown in alkaline bauxite processing residue amended with gypsum and thermally dried sewage sludge—a two year field study. Plant Soil 266:187–194
Courtney R, Timpson J (2005) Reclamation of fine fraction bauxite processing residue (red mud) amended with coarse fraction residue and gypsum. Water Air Soil Pollut 164(1–4):91–102
Courtney R, Mullen G, Harrington T (2009a) An evaluation of revegetation success on bauxite residue. Restor Ecol 17:350–358
Courtney RG, Jordan SN, Harrington T (2009b) Physico-chemical changes in bauxite residue following application of spent mushroom compost and gypsum. Land Degrad Dev 20:572–581
Courtney R, Harrington T, Byrne KA (2013) Indicators of soil formation in restored bauxite residues. Ecol Eng 58:63–68
Eastham J, Morald T, Aylmore P (2006) Effective nutrient sources for plant growth on bauxite residue. Water Air Soil Pollut 176(1–4):5–19
Fois E, Lallai A, Mura G (2007) Sulfur dioxide absorption in a bubbling reactor with suspensions of Bayer red mud. Ind Eng Chem Res 46:6770–6776
Frouz J, Prach K, Pi LV, Háněl L, Stary J, Tajovsky K, Materna J, Balík V, Kal Ík JÍ, Ehounková K (2008) Interactions between soil development, vegetation and soil fauna during spontaneous succession in post mining sites. Eur J Soil Biol 44:109–121
Fuller RD, Richardson CJ (1986) Aluminate toxicity as a factor controlling plant growth in bauxite residue. Environ Toxicol Chem 5:905–915
Fuller RD, Nelson EDP, Richardson CJ (1982) Reclamation of red mud (bauxite residues) using alkaline-tolerant grasses with organic amendments. J Environ Manag 11:533–539
Garau G, Castaldi P, Santona L, Deiana P, Melis P (2007) Influence of red mud, zeolite and lime on heavy metal immobilization, culturable heterotrophic microbial populations and enzyme activities in a contaminated soil. Geoderma 142:47–57
Gräfe M, Klauber C (2011) Bauxite residue issues: IV. Old obstacles and new pathways for in situ residue bioremediation. Hydrometallurgy 108:46–59
Hamada T (1986) Environmental management of bauxite residue—a review. The Jamaica Bauxite Institute, The University of the West Indies, Kingston, pp 109–117
Hamdy MK, Williams FS (2001) Bacterial amelioration of bauxite residue waste of industrial alumina plants. J Ind Microbiol Biot 27:228–233
Hanahan C, McConchie D, Pohl H, Creelman R, Clark M, Stocksiek C (2004) Chemistry of seawater neutralization of bauxite refinery residues (red mud). Environ Eng Sci 21:125–138
Harris MA (2009) Structural improvement of age-hardened gypsum-treated bauxite red mud waste using readily decomposable phyto-organics. Environ Geol 56(8):1517–1522
Hausberg J, Happel U, Meyer FM, Mistry M, Rohrlich M, Koch H, Martens PN, Schlimbach J, Rombach G, Kruger J (2000) Global red mud reduction potential through optimised technologies and ore selection. Miner Resour Eng 9:407–420
Hind AR, Bhargava SK, Grocott SC (1999) The surface chemistry of Bayer process solids: a review. Colloids Surf A Physicochem Eng Asp 146:359–374
MII (Mineral Information Institute) (2009) Aluminum & bauxite. http://www.mii.org/ Minerals/photoal.html.
Jiang J, Xu RK, Zhao AZ (2011) Surface chemical properties and pedogenesis of tropical soils derived from basalts with different ages in Hainan, China. Catena 87:334–340
Jones BEH, Haynes RJ (2011) Bauxite processing residue: a critical review of its formation, properties, storage, and revegetation. Crit Rev Environ Sci Tecnol 41:271–315
Jones BEH, Haynes RJ, Phillips IR (2010) Effect of amendment of bauxite processing sand with organic materials on its chemical, physical and microbial properties. J Environ Manag 91(11):2281–2288
Jones BEH, Haynes RJ, Phillips IR (2011) Influence of organic waste and residue mud additions on chemical, physical and microbial properties of bauxite residue sand. Environ Sci Pollut Res 18:199–211
Kahane R, Nguyen T, Schwarz MP (2002) CFD modelling of thickeners at Worsley Alumina Pty Ltd. Appl Math Model 26:281–296
Khaitan S, Dzombak DA, Lowry GV (2009) Mechanisms of neutralization of bauxite residue by carbon dioxide. J Environ Eng 135:433–438
Kirkpatrick DB (1996) Red mud product development. Light metals. TMS, Anaheim, pp 75–80
Kirwan LJ, Hartshorn A, McMonagle JB, Fleming L, Funnell D (2013) Chemistry of bauxite residue neutralisation and aspects to implementation. Int J Miner Process 119:40–50
Klauber C, Gräfe M, Power G (2011) Bauxite residue issues: II. Options for residue utilization. Hydrometallurgy 108:11–32
Kopittke PM, Menzies NW (2005) Effect of pH on Na induced Ca deficiency. Plant Soil 269:119–129
Krishna P, Reddy MS, Patnaik SK (2005) Aspergillus tubingensis reduces the pH of the bauxite residue (Red mud) amended soils. Water Air Soil Pollut 167:201–209
Kumar S, Kumar R, Bandopadhyay A (2006) Innovative methodologies for the utilisation of wastes from metallurgical and allied industries. Resour Conserv Recycl 48:301–314
Lee S, Lee J, Choi YJ, Kim J (2009) In situ stabilization of cadmium-, lead-, and zinc-contaminated soil using various amendments. Chemosphere 77:1069–1075
Li Y, Liu C, Luan Z, Peng X, Zhu C, Chen Z, Zhang Z, Fan J, Jia Z (2006) Phosphate removal from aqueous solutions using raw and activated red mud and fly ash. J Hazard Mater 137:374–383
Liu W, Yang J, Xiao B (2009) Review on treatment and utilization of bauxite residues in China. Int J Miner Process 93:220–231
López E, Soto B, Arias M, Nú Ez A, Rubinos D, Barral MT (1998) Adsorbent properties of red mud and its use for wastewater treatment. Water Res 32:1314–1322
Meecham JR, Bell LC (1977) Revegetation of alumina refinery wastes. 1. Properties and amelioration of materials. Aust J Exp Agric 17:679–688
Mendez MO, Maier RM (2007) Phytostabilization of mine tailings in arid and semiarid environments—an emerging remediation technology. Environ Health Perspect 116:278–283
Mendez MO, Maier RM (2008) Phytoremediation of mine tailings in temperate and arid environments. Rev Environ Sci Bio Technol 7:47–59
Meyer FM (2004) Availability of bauxite reserves. Nat Resour Res 13:161–172
Mohan RK, Herbich JB, Hossner LR, Williams FS (1997) Reclamation of solid waste landfills by capping with dredged material. J Hazard Mater 53:141–164
Newson T, Dyer T, Adam C, Sharp S (2006) Effect of structure on the geotechnical properties of bauxite residue. J Geotech Geoenviron 132:143–151
Nguyen QD, Boger DV (1998) Application of rheology to solving tailings disposal problems. Int J Miner Process 54:217–233
Nikraz HR, Bodley AJ, Cooling DJ, Kong PYL, Soomro M (2007) Comparison of physical properties between treated and untreated bauxite residue mud. J Mater Civ Eng 19:2–9
Ochsenkuhn-Petropoulou MT, Hatzilyberis KS, Mendrinos LN, Salmas CE (2002) Pilot-plant investigation of the leaching process for the recovery of scandium from red mud. Ind Eng Chem Res 41:5794–5801
Paramguru RK, Rath PC, Misra VN (2005) Trends in red mud utilization—a review. Miner Process Extr Metall Rev 26:1–29
Power G, Gräfe M, Klauber C (2011) Bauxite residue issues: I. Current management, disposal and storage practices. Hydrometallurgy 108:33–45
Pradhan J, Das SN, Thakur RS (1999) Adsorption of hexavalent chromium from aqueous solution by using activated red mud. J Colloid Interface Sci 217(1):137–141
Santini TC, Fey MV (2013) Spontaneous vegetation encroachment upon bauxite residue (Red Mud) as an indicator and facilitator of in situ remediation processes. Environ Sci Technol 47:12089–12096
Schellmann W (1994) Geochemical differentiation in laterite and bauxite formation. Catena 21:131–143
Schmalenberger A, O’Sullivan O, Gahan J, Cotter PD, Courtney R (2013) Bacterial communities established in bauxite residues with different restoration histories. Environ Sci Technol 47:7110–7119
Sglavo VM, Campostrini R, Maurina S, Carturan G, Monagheddu M, Budroni G, Cocco G (2000) Bauxite ‘red mud’ in the ceramic industry. Part 1: thermal behaviour. J Eur Ceram Soc 20:235–244
Singh M, Upadhayay SN, Prasad PM (1997) Preparation of iron of iron rich cements using mud. Cem Concr Res 27:1037–1046
Sushil S, Batra VS (2012) Modification of red mud by acid treatment and its application for CO removal. J Hazard Mater 203–204:264–273
Thornber MR, Binet D (1999) Caustic soda adsorption on Bayer residues. In: Alumina W (ed) 5th International Alumina Quality Workshop. AQW lnc., Bunbury, pp 498–507
Tsuji GY (1993) Alleviating soil fertility constraints to increased crop production in West Africa: Edited by A. Uzo Mokwunye. Developments in plant and soil sciences, Volume 47, Kluwer Academic Publishers, 244: 354–355
USGS (United States Geological Survey) (2014) Mineral commodity summaries: bauxite and alumina. United States Government Printing Office, Washington. http://minerals.usgs.gov/minerals/pubs/commodity/bauxite/index.html#mcs.
Wang S, Ang HM, Tadé MO (2008) Novel applications of red mud as coagulant, adsorbent and catalyst for environmentally benign processes. Chemosphere 72:1621–1635
Wehr JB, Fulton I, Menzies NW (2006) Revegetation strategies for bauxite refinery residue: a case study of Alcan Gove in Northern Territory, Australia. Environ Manag 37:297–306
Williams FS, Hamdy DMK (1982) Induction of biological activity in bauxite residue. John Wiley & Sons, Inc. 957–964
Wong JWC, Ho GE (1993) Use of waste gypsum in the revegetation on Red Mud deposits: a greenhouse study. Waste Manag Res 11:249–256
Wong JWC, Ho GE (1994a) Sewage sludge as organic ameliorant for revegetation of fine bauxite refining residue. Resour Conserv Recycl 11:297–309
Wong JWC, Ho GE (1994b) Effectiveness of acidic industrial wastes for reclaiming fine bauxite refining residue (red mud). Soil Sci 158:115–123
Woodard HJ, Hossner L, Bush J (2008) Ameliorating caustic properties of aluminum extraction residue to establish a vegetative cover. J Environ Sci Health A 43:1157–1166
Wu Y, Li Y, Zheng C, Zhang Y, Sun Z (2013) Organic amendment application influence soil organism abundance in saline alkali soil. Eur J Soil Biol 54:32–40
Xenidis A, Harokopou AD, Mylona E, Brofas G (2005) Modifying alumina red mud to support a revegetation cover. JOM 57:42–46
Yal NN, Sevin V (2000) Utilization of bauxite waste in ceramic glazes. Ceram Int 26:485–493
Yang HZ et al (1989) Bauxite deposits in China. Chin J Geochem 8:293–305
Yang CW, Zhang ML, Liu J, Shi DC, Wang DL (2009) Effects of buffer capacity on growth, photosynthesis, and solute accumulation of a glycophyte (wheat) and a halophyte (Chloris virgata). Photosynthetica 47:55–60
Yu Z, Shi Z, Chen Y, Niu Y, Wang Y, Wan P (2012) Red-mud treatment using oxalic acid by UV irradiation assistance. T Nonferr Metal Soc 22:456–460
Zhang J, Mu C (2009) Effects of saline and alkaline stresses on the germination, growth, photosynthesis, ionic balance and anti-oxidant system in an alkali-tolerant leguminous forage Lathyrus quinquenervius. Soil Sci Plant Nutr 55:685–697
Zhang S, Liu C, Luan Z, Peng X, Ren H, Wang J (2008) Arsenate removal from aqueous solutions using modified red mud. J Hazard Mater 152:486–492
Zhu C, Luan Z, Wang Y, Shan X (2007) Removal of cadmium from aqueous solutions by adsorption on granular red mud (GRM). Sep Purif Technol 57:161–169
Acknowledgments
Financial support from the National Natural Science Foundation of China (No. 41371475) and Environmental protection’s special scientific research for Chinese public welfare industry (No. 201509048) is gratefully acknowledged.
Author information
Authors and Affiliations
Corresponding authors
Additional information
Responsible editor: Philippe Garrigues
Rights and permissions
About this article
Cite this article
Xue, S., Zhu, F., Kong, X. et al. A review of the characterization and revegetation of bauxite residues (Red mud). Environ Sci Pollut Res 23, 1120–1132 (2016). https://doi.org/10.1007/s11356-015-4558-8
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11356-015-4558-8