Skip to main content

Advertisement

Log in

Variability of cadmium, lead, and zinc tolerance and accumulation among and between germplasms of the fiber crop Boehmeria nivea with different root-types

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Crop germplasms substantially vary in their tolerance for and accumulation of heavy metals, and assessment of this variability plays a significant role in selecting species to use in phytoremediation projects. Here, we examined germplasm-variations in cadmium (Cd), lead (Pb), and zinc (Zn) tolerance and accumulation in ramie (Boehmeria nivea), a fiber crop native to China, which has received little attention. In an 8-week greenhouse test, fourteen germplasms of ramie, among and within deep, middle, and shallow rooted-types, were compared for growth and metal accumulation traits. Results showed that both tolerance and accumulation traits varied across germplasms and rooted-types. The deep rooted-type germplasms produced more biomass and had higher tolerance to metals than the two others. In addition, considerable variations in metal accumulation were observed among plant organs (root, stem, and leaf), rooted-types, germplasms, and metal supply. However, the observed variations in metal tolerance and accumulation among both germplasms and rooted-types were not significant in most cases. In addition to supporting the idea of a certain degree of constitutional metal tolerance for ramie, our results also contribute to deep-rooted germplasms of ramie as a good candidate, rather than middle-/shallow- ones as a least-bad option, for the remediation of multi metal-contaminated soils.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Alkorta I, Hernández-Allica J, Becerril JM, Amezaga I, Albizu I, Garbisu C (2004) Recent findings on the phytoremediation of soils contaminated with environmentally toxic heavy metals and metalloids such as zinc, cadmium, lead, and arsenic. Rev Environ Sci Biotechnol 3:71–90

    Article  CAS  Google Scholar 

  • Angelova VR, Ivanova RV, Delibaltova VA, Ivanov KI (2011) Use of sorghum crops for in situ phytoremediation of polluted soils. J Agric Sci Technol A1:693–702

    Google Scholar 

  • Assuncao AGL, Bookum WM, Nelissen HJM, Vooijs R, Schat H, Ernst WHO (2003) Differential metal-specific tolerance and accumulation patterns among Thlaspi caerulescens populations originating from different soil types. New Phytol 159:411–419

    Article  CAS  Google Scholar 

  • Baker AJM, Walker PL (1990) Ecophysiology of metal uptake by tolerant plants. In: Shaw AJ (ed) Heavy metal tolerance in plants. CRC Press, Boca Raton, pp 155–178

    Google Scholar 

  • Baker AJM, Reeves RD, McGrath SP (1991) In situ decontamination of heavy metal polluted soils using crops of metal accumulating plants? A feasibility study. In: Hinchee RL, Olfenbuttel RF (eds) In situ nioreclamation. Butterworth-Heinemann, Boston

    Google Scholar 

  • Barata C, Baird DJ, Mitchell SE, Soares AM (2002) Among- and within-population variability in tolerance to cadmium stress in natural populations of Daphnia magna: implications for ecological risk assessment. Environ Toxicol Chem 21:1058–1064

    Article  CAS  Google Scholar 

  • Borisev M, Pajevic S, Nikolic N, Pilipovic A, Krstic B, Orlovic S (2009) Phytoextraction of Cd, Ni, and Pb using four willow clones (Salix spp.). Pol J Environ Stud 18:553–561

    CAS  Google Scholar 

  • Chaney RL, Malik M, Li YM, Brown SL, Brewer EP, Angle JS, Baker AJM (1997) Phytoremediation of soil metals. Curr Opin Biotechnol 8:279–284

    Article  CAS  Google Scholar 

  • Cha-Um S, Kirdmanee C (2008) Assessment of salt tolerance in Eucalyptus, rain tree and Thai neem under laboratory and the field conditions. Pak J Bot 40:2041–2051

    CAS  Google Scholar 

  • Chen ZL, Yang B, Deng DM, Dong JH, Peng XC (2012) Lead tolerance and accumulation in three cultivars of Eucalyptus urophyllaXE.grandis: implication for phytoremediation. Environ Earth Sci 67:1515–1520

    Article  Google Scholar 

  • Cui GX, Li ZD (2000) Relationship between potassium absorption and root parameters of different genotypes of ramie. Res Agric Modernization 21:371–375 (in Chinese)

    Google Scholar 

  • Dai JP, Jie YC, Len J, Shun ZM (2003) Study on the cadmium distributing regulation in different parts of plant of different ramie germplasms. Plant Fiber Sci China 25:279–282 (in Chinese)

    Google Scholar 

  • Deng SL, Li XF, Deng FL, Guo XL, Liu JP (2002) Determination of cadmium in mineral Cd-polluted soil and ramie samples by FAAS and its application in amelioration of soils. Guangdong Trace Elem Sci 9:46–49 (in Chinese)

    CAS  Google Scholar 

  • Deng H, Ye ZH, Wong MH (2006) Lead and zinc accumulation and tolerance in populations of six wetland species. Environ Pollut 141:69–80

    Article  CAS  Google Scholar 

  • Dickinson N, Baker A, Doronila A, Laidlaw S, Reeves R (2009) Phytoremediation of inorganics: realism and synergies. Int J Phytoremediat 11:97–114

    Article  CAS  Google Scholar 

  • Henson TM, Cory W, Rutter MT (2013) Extensive variation in cadmium tolerance and accumulation among populations of Chamaecrista fasciculate. PLOS ONE 8, e63200. doi:10.1371/journal.pone.0063200

    Article  CAS  Google Scholar 

  • Institute of Bast Fiber Crops (Chinese Academy of Agricultural Sciences) (1992) Ramie varieties in China. China Agriculture Press, Beijing

    Google Scholar 

  • Ismail S (2013) Phytoremediation: a green technology. Iran J Plant Physiol 3:567–568

    Google Scholar 

  • Li ZD (1992) Study on the influence of plant hormones in the growth and development of ramie. In: Collection of Academic Theses on Ramie for Li Zongdao. Hunan Science and Technology Press, Changsha

  • Li JT, Baker AJM, Ye ZH, Wang HB, Shu WS (2012) Phytoextraction of Cd-contaminated soils: current status and future challenges. Crit Rev Environ Sci Technol 42:2113–2152

    Article  CAS  Google Scholar 

  • Lin KF, Zhang DM, Li QH, Xiang YL (1996) Cadmium accumulation in ramie and restoration of Cd-contaminated soils. Agro-Environ Prot 15:1–4 (in Chinese)

    Google Scholar 

  • Liu FH, Li ZJ, Liu QY, He H, Liang XN, Lai ZJ (2003) Introduction to the wild resources of the genus Boehmeria Jacq. in China. Genet Resour Crop Evol 50:793–797

    Article  Google Scholar 

  • Liu YG, Wang X, Zeng GM, Qu D, Gu JJ, Zhou M, Chal LY (2007) Cadmium induced oxidative stress and response of the ascorbate-glutathione cycle in Bechmeria nivea (L.) Gaud. Chemosphere 69:99–107

    Article  CAS  Google Scholar 

  • Liu X, Li X, Chermaine Ong SM, Chu Z (2013) Progress of phytoremediation: focus on new plant and molecular mechanism. J Plant Biol Soil Health 1:1–5

    CAS  Google Scholar 

  • Luo L, Ma YB, Zhang SZ, Wei DP, Zhu YG (2009) An inventory of trace element inputs to agricultural soils in China. J Environ Manag 90:2524–2530

    Article  CAS  Google Scholar 

  • Maestri E, Marmiroli M, Visioli G, Marmiroli N (2010) Metal tolerance and hyperaccumulation: costs and trade-offs between traits and environment. Environ Exp Bot 68:1–13

    Article  CAS  Google Scholar 

  • Marchand L, Nsanganwimana F, Lamy JB, Quintela-Sabaris C, Gonnelli C, Colzi I, Fletcher T, Oustriere N, Kolbas A, Kidd P, Bordas F, Newell P, Alvarenga P, Deletic A, Mench M (2014) Root biomass production in populations of six rooted macrophytes in response to Cu exposure: intra-specific variability versus constitutive-like tolerance. Environ Pollut 193:205–215

    Article  CAS  Google Scholar 

  • Matthews D, Moran BM, McCabe PF, Otte ML (2004) Zinc tolerance, uptake, accumulation and distribution in plants and protoplasts of five European populations of the wetland grass Glyceria fluitans. Aquat Bot 80:39–52

    Article  CAS  Google Scholar 

  • McGrath SP, Chaudri AM, Giller KE (1995) Long-term effects of metals in sewage-sludge on soils, microorganisms and plants. J Ind Microbiol 14:94–104

    Article  CAS  Google Scholar 

  • Mertens J, Vervaeke P, Meers E, Tack FMF (2006) Seasonal changes of metals in willow (Salix sp.) stands for phytoremediation on dredged sediment. Environ Sci Technol 40:1962–1968

    Article  CAS  Google Scholar 

  • Meyer CL, Kostecka AA, Saumitou-Laprade P, Créach A, Castric V, Pauwels M, Frérot H (2010) Variability of zinc tolerance among and within populations of the pseudometallophyte species Arabidopsis halleri and possible role of directional selection. New Phytol 185:130–142

    Article  CAS  Google Scholar 

  • Muthukumar T, Bagyaraj DJ (2010) Use of arbuscular mycorrhizal fungi in phytoremediation of heavy metal contaminated soils. Proc Natl Acad Sci U S A 80:103–121

    CAS  Google Scholar 

  • Nagajyoti PC, Lee KD, Sreekanth TVM (2010) Heavy metals, occurrence and toxicity for plants: a review. Environ Chem Lett 8:199–216

    Article  CAS  Google Scholar 

  • Oduor AM, Lankau RA, Strauss SY, Gomez JM (2011) Introduced Brassica nigra populations exhibit greater growth and herbivore resistance but less tolerance than native populations in the native range. New Phytol 197:536–544

    Article  Google Scholar 

  • Paz-Alberto AM, Sigua GC (2013) Phytoremediation: a green technology to remove environmental pollutants. Am J Clim Chang 2:71–86

    Article  Google Scholar 

  • Peng XC, Yang B, Deng DM, Dong JH, Chen ZL (2012) Lead tolerance and accumulation in three cultivars of Eucalyptus urophyllaXE.grandis: implication for phytoremediation. Environ Earth Sci 67:1515–1520

  • Puschenreiter M, Stoger G, Lombi E, Horak O, Wenzel WW (2001) Phytoextraction of heavy metal contaminated soils with Thlaspi goesingense and Amaranthus hybridus: rhizosphere manipulation using EDTA and ammonium sulfate. J Plant Nutr Soil Sci 164:615–621

    Article  CAS  Google Scholar 

  • Pyatt FB (2001) Copper and lead bioaccumulation by Acacia retinoides and Eucalyptus torquata in sites contaminated as a consequence of extensive ancient mining activities in Cyprus. Ecotoxicol Environ Saf 50:60–64

    Article  CAS  Google Scholar 

  • Rascio N, Navari-Izzo F (2011) Heavy metal hyperaccumulating plants: how and why do they do it? And what makes them so interesting? Plant Sci 180:169–181

    Article  CAS  Google Scholar 

  • Sarma H (2011) Metal hyperaccumulation in plants: a review focusing on phytoremediation technology. J Environ Sci Technol 4:118–138

    Article  CAS  Google Scholar 

  • She W, Jie YC, Xing HC, Lu YW, Huang M, Kang WL, Wang D (2011a) Tolerance to cadmium in ramie (Boehmeria nivea) genotypes and its evaluation indicators. Acta Agron Sin 37:348–353

    CAS  Google Scholar 

  • She W, Jie YC, Xing HC, Lu YW, Kang WL, Wang D (2011b) Heavy metal concentrations and bioaccumulation of ramie (Boehmeria nivea) growing on 3 mining areas in Shimen, Lengshuijiang and Liuyang of Hunan Province. Acta Ecol Sin 31:874–881

    CAS  Google Scholar 

  • Song WY, Choi YI, Shim D (2007) Transgenic poplar for phytoremediation. In: Xu Z, Li J, Xue Y, Yang W (eds) Biotechnology and sustainable agriculture 2006 and beyond. Springer, The Netherlands, pp 265–271

    Chapter  Google Scholar 

  • Sun L, Liao X, Yan X, Zhu G, Ma D (2014) Evaluation of heavy metal and polycyclic aromatic hydrocarbons accumulation in plants from typical industrial sites: potential candidate in phytoremediation for co-contamination. Environ Sci Pollut Res Int 21:12494–12504

    Article  CAS  Google Scholar 

  • U.S. Environmental Protection Agency (USEPA) (1996) Method 3052—Microwave assisted acid digestion of siliceous and organically based matrices: U.S. Environmental Protection Agency SW–846. http://epa.gov/sw-846/pdfs/3052.pdf. Accessed 21 Mar 2007

  • Udeigwe TK, Eze PN, Teboh JM, Stietiya MH (2011) Application, chemistry, and environmental implications of contaminant-immobilization amendments on agricultural soil and water quality. Environ Int 37:258–267

    Article  CAS  Google Scholar 

  • Van Nevel L, Mertens J, Oorts K, Verheyen K (2007) Phytoextraction of metals from soils: how far from practice? Environ Pollut 150:34–40

    Article  Google Scholar 

  • Wang HB, Wong MH, Lan CY, Qin YR, Shu WS, Chen GZ, Ye ZH (2007) Uptake and accumulation of arsenic by eleven Pteris taxa from southern China. Environ Pollut 145:225–233

    Article  CAS  Google Scholar 

  • Wei CY, Chen TB (2002) An preview on the status of research and application of heavy metal phytoremediation. Adv Earth Sci 17:833–839

    Google Scholar 

  • Wierzbicka M (1999) Comparison of lead tolerance in Allium cepa with other plant species. Environ Pollut 104:41–52

  • Wilkins DA (1978) The measurement of tolerance to edaphic factors by means of root growth. New Phytol 80:623–633

    Article  CAS  Google Scholar 

  • Yang B, Shu WS, Ye ZH, Lan CY, Wong MH (2003) Growth and metal accumulation in vetiver and two Sesbania species on lead/zinc mine tailings. Chemosphere 52:1593–1600

    Article  CAS  Google Scholar 

  • Yang B, Zhou M, Shu WS, Lan CY, Ye ZH, Qiu RL, Jie YC, Cui GX, Wong MH (2010) Constitutional tolerance to heavy metals of a fibre crop, ramie (Boehmeria nivea), and its potential usage. Environ Pollut 158:551–558

    Article  CAS  Google Scholar 

  • Ye ZH, Baker AJM, Wong MH, Willis AJ (1997a) Zinc, lead and cadmium tolerance, uptake and accumulation in populations of Typha latifolia L. New Phytol 136:469–480

    Article  CAS  Google Scholar 

  • Ye ZH, Baker AJM, Wong MH, Willis AJ (1997b) Zinc, lead and cadmium tolerance, uptake and accumulation in populations of Phragmites australis (Cav.) Trin. ex Steudel. Ann Bot 80:363–370

    Article  CAS  Google Scholar 

  • Zabludowska E, Kowalska J, Jedynak L, Wojas S, Sklodowska A, Antosiewicz DM (2009) Search for a plant for phytoremediation-what can we learn from field and hydroponic studies? Chemosphere 77:301–307

    Article  CAS  Google Scholar 

  • Zhao FJ, McGrath SP (2009) Biofortification and phytoremediation. Curr Opin Plant Biol 12:373–380

    Article  CAS  Google Scholar 

  • Zhou JH, Yang QW, Lan CY, Ye ZH (2010) Heavy metal uptake and extraction potential of two Bechmeria nivea (L.) Gaud. (ramie) varieties associated with chemical reagents. Water Air Soil Pollut 211:359–366

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study is financially supported by the National “863” Project of China (No. 2012AA06A304), National Natural Science Foundation of China (No. 30900158), and the Key Program of the Special Scientific Research Fund of Environmental Public Welfare Profession of China (Grant No. 201109017-2).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Yang.

Additional information

Responsible editor: Elena Maestri

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 291 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, B., Zhou, M., Zhou, L.L. et al. Variability of cadmium, lead, and zinc tolerance and accumulation among and between germplasms of the fiber crop Boehmeria nivea with different root-types. Environ Sci Pollut Res 22, 13960–13969 (2015). https://doi.org/10.1007/s11356-015-4549-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-015-4549-9

Keywords

Navigation