Advertisement

Environmental Science and Pollution Research

, Volume 22, Issue 17, pp 13111–13126 | Cite as

Characterization and source apportionment of particle number concentration at a semi-urban tropical environment

  • Md Firoz KhanEmail author
  • Mohd Talib Latif
  • Norhaniza Amil
  • Liew Juneng
  • Noorlin Mohamad
  • Mohd Shahrul Mohd Nadzir
  • Hossain Mohammed Syedul Hoque
Research Article

Abstract

Principal component analysis (PCA) and correlation have been used to study the variability of particle mass and particle number concentrations (PNC) in a tropical semi-urban environment. PNC and mass concentration (diameter in the range of 0.25–>32.0 μm) have been measured from 1 February to 26 February 2013 using an in situ Grimm aerosol sampler. We found that the 24-h average total suspended particulates (TSP), particulate matter ≤10 μm (PM10), particulate matter ≤2.5 μm (PM2.5) and particulate matter ≤1 μm (PM1) were 14.37 ± 4.43, 14.11 ± 4.39, 12.53 ± 4.13 and 10.53 ± 3.98 μg m−3, respectively. PNC in the accumulation mode (<500 nm) was the most abundant (at about 99 %). Five principal components (PCs) resulted from the PCA analysis where PC1 (43.8 % variance) predominates with PNC in the fine and sub-microme tre range. PC2, PC3, PC4 and PC5 explain 16.5, 12.4, 6.0 and 5.6 % of the variance to address the coarse, coarser, accumulation and giant fraction of PNC, respectively. Our particle distribution results show good agreement with the moderate resolution imaging spectroradiometer (MODIS) distribution.

Keywords

PCA-MLR Particle number Diurnal variation Back trajectory Fire hotspot Aerosol size distribution 

Notes

Acknowledgments

The authors would like to thank the Universiti Kebangsaan Malaysia for the Research University Grant (DIP-2012-020). We also would like to thank the Ministry of Education for the Fundamental Research Grant (FRGS/1/2013/STWN01/UKM/02/2). Special thanks to Ms K Alexander and Dr. Rose Norman for proofreading this manuscript.

References

  1. Badarinath KVS, Madhavi Latha K, Kiran Chand TR, Gupta PK, Ghosh AB, Jain SL, Gera BS, Singh R, Sarkar AK, Singh N, Parmar RS, Koul S, Kohli R, Nath S, Ojha VK, Singh G (2004) Characterization of aerosols from biomass burning—a case study from Mizoram (Northeast), India. Chemosphere 54:167–175CrossRefGoogle Scholar
  2. Birmili W, Wiedensohler A, Heintzenberg J, Lehmann K (2001) Atmospheric particle number size distribution in central Europe: statistical relations to air masses and meteorology. J Geophys Res 106:32005–32018CrossRefGoogle Scholar
  3. Choi H, Choi DS (2008) Concentrations of PM10, PM2.5, and PM1 influenced by atmospheric circulation and atmospheric boundary layer in the Korean mountainous coast during a duststorm. Atmos Res 89:330–337CrossRefGoogle Scholar
  4. Chow JC, Watson JG, Lowenthal DH, Hackney R, Magliano K, Lehrman D, Smith T (1999) Temporal variations of PM2.5, PM10 and gaseous precursors during the 1995 integrated monitoring study in central California. J Air Waste Manage Assoc 49:16–24CrossRefGoogle Scholar
  5. Cusack M, Pérez N, Pey J, Alastuey A, Querol X (2013) Source apportionment of fine PM and sub-micron particle number concentrations at a regional background site in the western Mediterranean: a 2.5 year study. Atmos Chem Phys 13:5173–5187CrossRefGoogle Scholar
  6. Cyrys J, Pitz M, Heinrich J, Wichmann HE, Peters A (2008) Spatial and temporal variation of particle number concentration in Augsburg, Germany. Sci Total Environ 401:168–175CrossRefGoogle Scholar
  7. Draxler RR, Rolph GD (2013) HYSPLIT (HYbrid Single-Particle Lagrangian Integrated Trajectory) Model access via NOAA ARL READY Website (http://ready.arl.noaa.gov/HYSPLIT.php). NOAA Air Resources Laboratory, Silver Spring, MD
  8. Durant JL, Ash CA, Wood EC, Herndon SC, Jayne JT, Knighton WB, Canagaratna MR, Trull JB, Brugge D, Zamore W, Kolb CE (2010) Short-term variation in near-highway air pollutant gradients on a winter morning. Atmos Chem Phys 10:5599–5626CrossRefGoogle Scholar
  9. Feng N, Christopher SA (2013) Satellite and surface-based remote sensing of Southeast Asian aerosols and their radiative effects. Atmos Res 122:544–554CrossRefGoogle Scholar
  10. Gabey AM, Gallagher MW, Whitehead J, Dorsey JR, Kaye PH, Stanley WR (2010) Measurements and comparison of primary biological aerosol above and below a tropical forest canopy using a dual channel fluorescence spectrometer. Atmos Chem Phys 10:4453–4466CrossRefGoogle Scholar
  11. Galindo N, Gil-Moltó J, Varea M, Chofre C, Yubero E (2013) Seasonal and interannual trends in PM levels and associated inorganic ions in southeastern Spain. Microchem J 110:81–88CrossRefGoogle Scholar
  12. Grimm H, Eatough DJ (2009) Aerosol measurement: the use of optical light scattering for the determination of particulate size distribution, and particulate mass, including the semi-volatile fraction. J Air Waste Manage Assoc 59:101–107CrossRefGoogle Scholar
  13. Harrison RM, Beddows DCS, Dall’Osto M (2011) PMF analysis of wide-range particle size spectra collected on a major highway. Environ Sci Technol 45:5522–5528CrossRefGoogle Scholar
  14. Harshvardhan (1993) Chapter 3 aerosol-climate interactions. V.H. Peter (Ed.) International Geophysics, Academic PressGoogle Scholar
  15. Haywood J, Boucher O (2000) Estimates of the direct and indirect radiative forcing due to tropospheric aerosols: a review. Rev Geophys 38:513–543CrossRefGoogle Scholar
  16. Heintzenberg J (1994) Properties of the log-normal particle size distribution. Aerosol Sci Tech 21:46–48CrossRefGoogle Scholar
  17. Hinds WC (1999) Aerosol technology, properties, behavior, and measurement of airborne particles, 2nd edn. John Wiley & Sons, Inc., New YorkGoogle Scholar
  18. Hu X, Zhang Y, Ding Z, Wang T, Lian H, Sun Y, Wu J (2012) Bioaccessibility and health risk of arsenic and heavy metals (Cd, Co, Cr, Cu, Ni, Pb, Zn and Mn) in TSP and PM2.5 in Nanjing, China. Atmos Environ 57:146–152CrossRefGoogle Scholar
  19. Jacobson MZ (2002) Control of fossil-fuel particulate black carbon and organic matter, possibly the most effective method of slowing global warming. J Geophys Res 107(D19):4410CrossRefGoogle Scholar
  20. Johansson C, Norman M, Gidhagen L (2007) Spatial & temporal variations of PM10 and particle number concentrations in urban air. Environ Monit Assess 127:477–487CrossRefGoogle Scholar
  21. Jung J, Kim YJ, Lee KY, Cayetano MG, Batmunkh T, Koo JH, Kim J (2010) Spectral optical properties of long-range transport Asian dust and pollution aerosols over Northeast Asia in 2007 and 2008. Atmos Chem Phys 10:5391–5408CrossRefGoogle Scholar
  22. Kampa M, Castanas E (2008) Human health effects of air pollution. Environ Pollut 151:362–367CrossRefGoogle Scholar
  23. Khan MF, Hirano K, Masunaga S (2010) Quantifying the sources of hazardous elements of suspended particulate matter aerosol collected in Yokohama, Japan. Atmos Environ 44:2646–2657CrossRefGoogle Scholar
  24. Kim H, Hwang H, Ro C-U (2006) Single-particle characterization of soil samples collected at various arid areas of China, using low-Z particle electron probe X-ray microanalysis. Spectrochim Acta B 61:393–399CrossRefGoogle Scholar
  25. Kittelson DB, Watts WF, Johnson JP (2004) Nanoparticle emissions on Minnesota highways. Atmos Environ 38:9–19CrossRefGoogle Scholar
  26. Kittelson DB, Watts WF, Johnson JP (2006) On-road and laboratory evaluation of combustion aerosols—part1: summary of diesel engine results. J Aerosol Sci 37:913–930CrossRefGoogle Scholar
  27. Leitte AM, Schlink U, Herbarth O, Wiedensohler A, Pan X-C, Hu M, Wehner B, Breitner S, Peters A, Wichmann HE, Franck U (2011) Associations between size-segregated particle number concentrations and respiratory mortality in Beijing, China. Int J Environ Health Res 22:119–133CrossRefGoogle Scholar
  28. Lonati G, Ozgen S, Ripamonti G, Cernuschi S, Giugliano M (2011) Pedestrian exposure to size-resolved particles in Milan. J Air Waste Manage Assoc 61:1273–1280Google Scholar
  29. Meng X, Ma Y, Chen R, Zhou Z, Chen B, Kan H (2013) Size-fractionated particle number concentrations and daily mortality in a chinese city. Environ Health Perspect 121:1174–1178Google Scholar
  30. Morales Betancourt R, Nenes A (2014) Understanding the contributions of aerosol properties and parameterization discrepancies to droplet number variability in a global climate model. Atmos Chem Phys 14:4809–4826CrossRefGoogle Scholar
  31. Nicolás JF, Yubero E, Pastor C, Crespo J, Carratalá A (2009) Influence of meteorological variability upon aerosol mass size distribution. Atmos Res 94:330–337CrossRefGoogle Scholar
  32. Pey J, Querol X, Alastuey A, Rodríguez S, Putaud JP, Van Dingenen R (2009) Source apportionment of urban fine and ultra-fine particle number concentration in a Western Mediterranean city. Atmos Environ 43:4407–4415CrossRefGoogle Scholar
  33. Pope CA, Burnett RT, Thurston GD, Thun MJ, Calle EE, Krewski D, Godleski JJ (2004) Cardiovascular mortality and long-term exposure to particulate air pollution: epidemiological evidence of general pathophysiological pathways of disease. Circulation 109:71–77CrossRefGoogle Scholar
  34. Pope CA, Dockery DW (2006) Health effects of fine particulate air pollution: lines that connect. J Air Waste Manage Assoc 56:709–742CrossRefGoogle Scholar
  35. Ramanathan V, Crutzen PJ, Kiehl JT, Rosenfeld D (2001) Aerosols, climate, and the hydrological cycle. Science 294:2119–2124CrossRefGoogle Scholar
  36. Reid JS, Hyer EJ, Johnson RS, Holben BN, Yokelson RJ, Zhang J, Campbell JR, Christopher SA, Di Girolamo L, Giglio L, Holz RE, Kearney C, Miettinen J, Reid EA, Turk FJ, Wang J, Xian P, Zhao G, Balasubramanian R, Chew BN, Janjai S, Lagrosas N, Lestari P, Lin N-H, Mahmud M, Nguyen AX, Norris B, Oanh NTK, Oo M, Salinas SV, Welton EJ, Liew SC (2013) Observing and understanding the Southeast Asian aerosol system by remote sensing: an initial review and analysis for the Seven Southeast Asian Studies (7SEAS) program. Atmos Res 122:403–468CrossRefGoogle Scholar
  37. Richards LW (1983) Comments on the oxidation of NO2 to nitrate—day and night. Atmos Environ 17:397–402CrossRefGoogle Scholar
  38. Řimnáčová D, Ždímal V, Schwarz J, Smolík J, Řimnáč M (2011) Atmospheric aerosols in suburb of Prague: the dynamics of particle size distributions. Atmos Res 101:539–552CrossRefGoogle Scholar
  39. Rimselyte I (2007) Chemical composition and size distribution of fine aerosol particles on the east coast of the Baltic Sea. Lith J Physic Tech Sci 47:523–529CrossRefGoogle Scholar
  40. Salam A, Mamoon HA, Ullah MB, Ullah SM (2012) Measurement of the atmospheric aerosol particle size distribution in a highly polluted mega-city in Southeast Asia (Dhaka-Bangladesh). Atmos Environ 59:338–343CrossRefGoogle Scholar
  41. Seinfeld J, Pandis SN (2006) Atmospheric chemistry and physics: from air pollution to climate change. Wiley, New YorkGoogle Scholar
  42. Silva PJ, Liu D-Y, Noble CA, Prather KA (1999) Size and chemical characterization of individual particles resulting from biomass burning of local southern california species. Environ Sci Technol 33:3068–3076CrossRefGoogle Scholar
  43. Technik GA (2006) GRIMM Ambient Dust Monitor # 365 USER MANUAL. Grimm Aerosol Technik GmbH, Ainring GermanyGoogle Scholar
  44. Thurston GD, Spengler JD (1985) A quantitative assessment of source contributions to inhalable particulate matter pollution in metropolitan Boston. Atmos Environ 19:9–25CrossRefGoogle Scholar
  45. Tsai J-H, Tzu-Chi Chang L, Huang Y-S, Chiang H-L (2011) Particulate composition characteristics under different ambient air quality conditions. J Air Waste Manage Assoc 61:796–805CrossRefGoogle Scholar
  46. Van Malderen H, Rojas C, Van Grieken R (1992) Characterization of individual giant aerosol particles above the North Sea. Environ Sci Technol 26:750–756CrossRefGoogle Scholar
  47. Wan Mahiyuddin WR, Sahani M, Aripin R, Latif MT, Thach T-Q, Wong C-M (2013) Short-term effects of daily air pollution on mortality. Atmos Environ 65:69–79CrossRefGoogle Scholar
  48. Weber K, Vogel A, Fischer C, van Haren G, Pohl T (2010) Airborne measurements of the Eyjafjallajökull volcanic ash plume over northwestern Germany with a light aircraft and an optical particle counter: first results, Proc. SPIE 7832, Lidar technologies, techniques, and measurements for atmospheric remote sensing VI, pp. 78320P-78320P-15Google Scholar
  49. Weinzierl B, Sauer D, Esselborn M, Petzold A, Veira A, Rose M, Mund S, Wirth M, Ansmann A, Tesche M, Gross S, Freudenthaler V (2011) Microphysical and optical properties of dust and tropical biomass burning aerosol layers in the Cape Verde region-an overview of the airborne in situ and lidar measurements during SAMUM-2. Tellus Ser B Chem Phys Meteorol 63:589–618CrossRefGoogle Scholar
  50. Whitby KT, Clark WE, Marple VA, Sverdrup GM, Sem GJ, Willeke K, Liu BYH, Pui DYH (1975) Characterization of California aerosols—I. Size distributions of freeway aerosol. Atmos Environ 9:463–482CrossRefGoogle Scholar
  51. Xian P, Reid JS, Atwood SA, Johnson RS, Hyer EJ, Westphal DL, Sessions W (2013) Smoke aerosol transport patterns over the Maritime Continent. Atmos Res 122:469–485CrossRefGoogle Scholar
  52. Xiaoai G, Grimm H, Pesch M, Keck L, Spielvogel J, Schneider F, Brunnhuber W (2010) New methods for real-time measurement of environmental airborne particles, bioinformatics and biomedical engineering (ICBBE), 4th International Conference, pp. 1-4Google Scholar
  53. Xu J, Wang Z, Yu G, Sun W, Qin X, Ren J, Qin D (2013) Seasonal and diurnal variations in aerosol concentrations at a high-altitude site on the northern boundary of Qinghai-Xizang Plateau. Atmos Res 120–121:240–248CrossRefGoogle Scholar
  54. Yue D, Hu M, Wu Z, Wang Z, Guo S, Wehner B, Nowak A, Achtert P, Wiedensohler A, Jung J, Kim YJ, Liu S (2009) Characteristics of aerosol size distributions and new particle formation in the summer in Beijing. J Geophys Res 114:D00G12Google Scholar
  55. Zhu Y, Hinds WC, Kim S, Sioutas C (2002) Concentration and size distribution of ultrafine particles near a major highway. J Air Waste Manage Assoc 52:1032–1042CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Md Firoz Khan
    • 1
    Email author
  • Mohd Talib Latif
    • 1
    • 2
  • Norhaniza Amil
    • 2
    • 3
  • Liew Juneng
    • 1
    • 2
  • Noorlin Mohamad
    • 2
    • 4
  • Mohd Shahrul Mohd Nadzir
    • 1
    • 2
  • Hossain Mohammed Syedul Hoque
    • 1
    • 2
  1. 1.Centre for Tropical Climate Change System (IKLIM), Institute for Climate ChangeUniversiti Kebangsaan MalaysiaBangiMalaysia
  2. 2.School of Environmental and Natural Resource Sciences, Faculty of Science and TechnologyUniversiti Kebangsaan MalaysiaBangiMalaysia
  3. 3.School of Industrial Technology (Environmental Division)Universiti Sains MalaysiaPenangMalaysia
  4. 4.School of Ocean EngineeringUniversiti Malaysia TerengganuKuala TerengganuMalaysia

Personalised recommendations