Skip to main content
Log in

Effects of wind wave turbulence on the phytoplankton community composition in large, shallow Lake Taihu

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Wind waves are responsible for some of the spatio-temporal gradients observed in the biotic and abiotic variables in large shallow lakes. However, their effects on the phytoplankton community composition are still largely unexplored especially in freshwater systems such as lakes. In this paper, using field observations and mesocosm bioassay experiments, we investigated the impact of turbulence generated by wind waves on the phytoplankton community composition (especially on harmful cyanobacteria) in Lake Taihu, a large, shallow eutrophic lake in China. The composition of the phytoplankton community varied with the intensity of wind waves in the different areas of the lake. During summer, when wind waves were strong in the central lake, diatoms and green algae seemed to dominate while harmful cyanobacteria dominated in the weakly influenced Meiliang Bay. Turbulence bioassays also showed that diatoms and green algae were favoured by turbulent mixing. The critical time for the shift of the phytoplankton community composition was approximately 10 days under turbulent conditions. However, short-term (6 days) turbulence is rather beneficial for the dominance of cyanobacteria. This study suggests that the duration of wind events and their associated hydrodynamics are key factors to understanding the temporal and spatial changes of phytoplankton communities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Arin L, Marrasé C, Maar M, Peters F, Sala MM, Alcaraz M (2002) Combined effects of nutrients and small-scale turbulence in a microcosm experiment. I. Dynamics and size distribution of osmotrophic plankton. Auat Microb Ecol 29:51–61

    Article  Google Scholar 

  • Barton AD, Ward BA, Williams RG, Follows MJ (2014) The impact of fine-scale turbulence on phytoplankton community structure. Limnol Oceanogr: Fluids Environ 4(1):34–49

    Article  Google Scholar 

  • Berger WH, Parker FL (1970) Diversity of planktonic foraminifera in deep-sea sediments. Science 168(3937):1345–1347

    Article  CAS  Google Scholar 

  • Cao HS, Kong FX, Luo LC, Sh XL, Yang Z, Zhang XF, Tao Y (2006) Effects of wind and wind-induced waves on vertical phytoplankton distribution and surface blooms of Microcystis aeruginosa in Lake Taihu. J Freshwater Ecol 21(2):231–238

    Article  Google Scholar 

  • Cardoso LS, Marques DM (2009) Hydrodynamics-driven plankton community in a shallow lake. Aquat Ecol 43(1):73–84

    Article  Google Scholar 

  • Carrick HJ, Aldridge FJ, Schelske CL (1993) Wind influences phytoplankton biomass and composition in a shallow, productive lake. Limnol Oceanogr 38(6):1179–1192

    Article  Google Scholar 

  • Clarke RD, Buskey EJ, Marsden KC (2005) Effects of water motion and prey behavior on zooplankton capture by two coral reef fishes. Mar Biol 146(6):1145–1155

    Article  Google Scholar 

  • Donaghay PL, Osborn TR (1997) Toward a theory of biological-physical control of harmful algal bloom dynamics and impacts. Limnol Ocennogr 42:1283–1296

    Article  Google Scholar 

  • Estrada M, Berdalet E (1997) Phytoplankton in a turbulent world. Sci Mar 61:125–140

    Google Scholar 

  • Guadayol Ò, Peters F (2006) Analysis of wind events in a coastal area: a tool for assessing turbulence variability for studies on plankton. Sci Mar 70(1):9–20

    Article  Google Scholar 

  • Gulati RD, DeMott WR (1997) The role of food quality for zooplankton: remarks on the state-of-the-art, perspectives and priorities. Freshwater Biol 38(3):753–768

  • G-Tóth L, Parpala L, Balogh C, Tàtrai I, Baranyai E (2011) Zooplankton community response to enhanced turbulence generated by water-level decrease in Lake Balaton, the largest shallow lake in Central Europe. Limnol Ocennogr 56(6):2211–2222

    Article  Google Scholar 

  • Härkönen L, Pekcan-Hekim Z, Hellén N, Ojala A, Horppila J (2014) Combined effects of turbulence and different predation regimes on zooplankton in highly colored water—implications for environmental change in lakes. Plos One 9, e111942

    Article  Google Scholar 

  • Hu H, Li Y, Wei Y, Zhu H, Chen J, Shi Z (1980) Freshwater algae in China. Shanghai Science and Technology Press, Shanghai (in Chinese)

    Google Scholar 

  • Huisman J, Sharples J, Stroom JM, Visser PM, Kardinaal WEA, Verspagen JMH et al (2004) Changes in turbulent mixing shift competition for light between phytoplankton species. Ecology 85(11):2960–2970

    Article  Google Scholar 

  • Hunter PD, Tyler AN, Willby NJ, Gilvear DJ (2008) The spatial dynamics of vertical migration by Microcystis aeruginosa in a eutrophic shallow lake: a case study using high spatial resolution time-series airborne remote sensing. Limnol Oceanogr 53(6):2391–2406

    Article  Google Scholar 

  • Kundu PK, Cohen IM (2010) Fluid mechanics. San Diego Academic Press, California

    Google Scholar 

  • Li YP, Feng Y, Liu XP, Luo LC, Xu QX (2008) Numerical modeling of waves in Lake Taihu. J Lake Sci 20(1):117–122 (In Chinese)

    Article  Google Scholar 

  • Moreno-Ostos E, Cruz-Pizarro L, Basanta A, George D (2009) The influence of wind-induced mixing on the vertical distribution of buoyant and sinking phytoplankton species. Aquat Ecol 43(2):271–284

    Article  CAS  Google Scholar 

  • Oliver RL (1994) Floating and sinking in gas-vacuolate cyanobacteria. J Phycol 30:161–173

    Article  CAS  Google Scholar 

  • Paerl HW, Xu H, McCarthy MJ, Zhu G, Qin B, Li Y, Gardner WS (2011) Controlling harmful cyanobacterial blooms in a hyper-eutrophic lake (Lake Taihu, China): the need for a dual nutrient (N & P) management strategy. Water Res 45:1973–1983

    Article  CAS  Google Scholar 

  • Pápista É, Ács É, Böddi B (2002) Chlorophyll-a determination with ethanol—a critical test. Hydroiologia 485:191–198

    Article  Google Scholar 

  • Pécseli HL, Trulsen JK, Fiksen Ø (2014) Predator-prey encounter and capture rates in turbulent environments. Limnol Oceanogr: Fluids Environ 4:85–105

    Article  Google Scholar 

  • Pekcan-Hekim Z, Joensuu L, Horppila J (2013) Predation by a visual planktivore perch (Perca fluviatilis) in a turbulent and turbid environment. Can J Fish Aqarat Sci 70(6):854–859

    Article  Google Scholar 

  • Peters F, Marrasé C (2000) Effects of turbulence on plankton: an overview of experimental evidence and some theoretical considerations. Mar Ecol Prog Ser 205:291–306

    Article  Google Scholar 

  • Peters F, Redondo JM (1997) Turbulence generation and measurement: application to studies on plankton. Sci Mar 61:205–228

    Google Scholar 

  • Prairie JC, Sutherland KR, Nickols KJ, Kaltenberg AM (2012) Biophysical interactions in the plankton: a cross-scale review. Limnol Oceanogr 2(1):121–145

    Article  Google Scholar 

  • Qin BQ, Xu PZ, Wu QL, Luo LC, Zhang YL (2007) Environmental issues of Lake Taihu, China. Hydrobiologia 581(1):3–14

    Article  CAS  Google Scholar 

  • Qin BQ, Zhu GW, Gao G, Zhang YL, Li W, Paerl HW, Carmichael WW (2010) A drinking water crisis in Lake Taihu, China: linkage to climatic variability and lake management. Environ Manage 45(1):105–112

    Article  Google Scholar 

  • Romero E, Peters F, Marrasé C (2012) Dynamic forcing of coastal plankton by nutrient imbalances and match-mismatch between nutrients and turbulence. Mar Ecol Prog Ser 464:69–87

    Article  CAS  Google Scholar 

  • Ruiz J, Macias D, Peters F (2004) Turbulence increases the average settling velocity of phytoplankton cells. Proc Natl Acad Sci U S A 101(51):17720–17724

    Article  CAS  Google Scholar 

  • Sanford LP (1997) Turbulent mixing in experimental ecosystem studies. Mar Ecol Prog Ser 161:265–293

    Article  CAS  Google Scholar 

  • Wang P, Shen H, Xie P (2012) Can hydrodynamics change phosphorus strategies of diatoms?—nutrient levels and diatom blooms in lotic and lentic ecosystems. Microb Ecol 63(2):369–382

    Article  Google Scholar 

  • Wilson AE, Samelle O, Tillmanns AR (2006) Effects of cyanobacterial toxicity and morphology on the population growth of freshwater zooplankton: meta-analyses of laboratory experiments. Limnol Oceanogr 51(4):1915–1924

    Article  Google Scholar 

  • Wong KTM, Lee JHW, Hodgkiss IJ (2007) A simple model for forecast of coastal algal blooms. Estuar Coast Shelf Sci 74:175–196

    Article  Google Scholar 

  • Wu T, Qin B, Zhu G, Luo L, Ding Y, Bian G (2013) Dynamics of cyanobacterial bloom formation during short-term hydrodynamic fluctuation in a large shallow, eutrophic, and wind-exposed Lake Taihu, China. Environ Sci Pollut Res 20(12):8546–8556

    Article  CAS  Google Scholar 

  • Wu X, Kong F, Chen Y, Qian X, Zhang L, Yu Y, Zhang M, Xing P (2010) Horizontal distribution and transport processes of bloom-forming Microcystis in a large shallow lake (Taihu, China). Limnologica 40(1):8–15

    Article  CAS  Google Scholar 

  • Xu H, Paerl HW, Qin BQ, Zhu GW, Gao G (2010) Nitrogen and phosphorus inputs control phytoplankton growth in eutrophic Lake Taihu, China. Limnol Oceanogr 55(1):420–432

    Article  CAS  Google Scholar 

  • Zhu GW, Qin BQ, Gao G, Zhang L, Luo LC, Zhang YL (2007) Effects of hydrodynamics on phosphorus concentrations in water of Lake Taihu, a large, shallow, eutrophic lake of China. Hydrobiologia 581(1):53–61

    Article  CAS  Google Scholar 

  • Zhu MY, Paerl HW, Zhu GW (2014) The role of tropical cyclones in stimulating cyanobacterial (Microcystis spp.) blooms in hypertrophic Lake Taihu, China. Harmful Algae 39:310–321

    Article  Google Scholar 

  • Zohary T (1985) Hyperscums of the cyanobacterium Microcystis aeruginosa in a hypertrophic lake (Hartbeespoort Dam, South Africa). J Plankton Res 7(3):399–409

    Article  Google Scholar 

Download references

Acknowledgments

We appreciate the very thorough and constructive reviews provided by two anonymous reviewers. This research was supported by the National Science Foundation of China (41230744, 41471021) and Water Pollution Control and Management Project (2012ZX07503-002). We thank the Taihu Laboratory for Lake Ecosystem Research (TLLER) for providing the physical, chemical, and phytoplankton data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Boqiang Qin.

Additional information

Responsible editor: Philippe Garrigues

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, J., Qin, B., Casenave, C. et al. Effects of wind wave turbulence on the phytoplankton community composition in large, shallow Lake Taihu. Environ Sci Pollut Res 22, 12737–12746 (2015). https://doi.org/10.1007/s11356-015-4535-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-015-4535-2

Keywords

Navigation