Skip to main content

Impact of insecticide exposure on the predation activity of the European earwig Forficula auricularia

Abstract

The European earwig Forficula auricularia is an effective predator in apple orchards. It is therefore crucial to study whether insecticides affect this natural pest control agent. Predation activity, i.e., the number of aphids eaten in 24 h, was determined under laboratory conditions after exposure of fourth-instar nymphs and adult earwigs to widely used insecticides (acetamiprid, chlorpyrifos-ethyl, deltamethrin, and spinosad), which were applied at the normal application rates. Inhibition of acetylcholinesterase and carboxylesterase activities were also measured as indicators of pesticide exposure. Predation activity decreased significantly in nymphs exposed to spinosad (62 %) and chlorpyrifos-ethyl (98 %) compared with controls. A similar response was found for both esterase activities. Spinosad had a stronger effect on AChE (−33 %) whereas chlorpyrifos-ethyl affected CbE activity preferentially (−59 %). Spinosad (20 % of controls), acetamiprid (28 %), and chlorpyrifos-ethyl (66 %) also significantly decreased the predation behavior of adult male but not female (5 to 40 %) earwigs. Adult AChE and CbE activities were also significantly reduced (28 to 67 % of controls) in pesticide-exposed earwigs. Our results suggest that earwigs should be included in the environmental risk assessment framework for authorization of newly marketed plant protection products. Their predation behavior appears to be a sensitive and complementary biomarker.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Abbreviations

AChE:

Acetylcholinesterase

CbE:

Carboxylesterases

OP:

Organophosphorus pesticides

NAR:

Normal application rate

References

  • Albouy V, Caussanel C (1990) Faune de France 75 – Dermaptères ou perces-oreilles. Fédération Française des Sociétés de Sciences Naturelles, Paris, p 245

    Google Scholar 

  • Azevedo-Pereira HMVS, Lemos MFL, Soares AMVM (2011) Effects of imidacloprid exposure on Chironomus riparius meigen larvae: linking acetylcholinesterase activity to behaviour. Ecotoxicol Environ Saf 74:1210–1215

    CAS  Article  Google Scholar 

  • Badji CA, Guedes RNC, Silva AA, Araújo RA (2004) Impact of deltamethrin on arthropods in maize under conventional and no-tillage cultivation. Crop Prot 23:1031–1039

    CAS  Article  Google Scholar 

  • Bahlai CA, Xue Y, McCreary CM, Schaafsma AW, Hallett RH (2010) Choosing organic pesticides over synthetic pesticides may not effectively mitigate environmental risk in soybeans. PLoS ONE 5:e11250

    Article  Google Scholar 

  • Beers EH, Schmidt RA (2014) Impacts of orchards pesticides on Galendromus occidentalis : lethal and sublethal effects. Crop Prot 56:16–24

    CAS  Article  Google Scholar 

  • Benamú MA, Schneider MI, Gonzalez A, Sanchez NE (2013) Short and long-term effects of three neurotoxic insecticides on the orb-web spider Alpaida veniliae (Araneae, Araneidae): implications for IPM programs. Ecotoxicology 22:1155–1164

    Article  Google Scholar 

  • Biondi A, Mommaerts V, Smagghe G, Viñuela E, Zappalá L, Desneux N (2012a) The non-target impact of spinosyns on beneficial arthropods. Pest Manag Sci 68(12):1523–1536

    CAS  Article  Google Scholar 

  • Biondi A, Desneux N, Siscaro G, Zappalà L (2012b) Using organic-certified rather than synthetic pesticides may not be safer for biological control agents: selectivity and side effects of 14 pesticides on the predator Orius laevigatus. Chemosphere 87:803–812

    CAS  Article  Google Scholar 

  • Biondi A, Zappalà L, Stark JD, Desneux N (2013) Do biopesticides affect the demographic traits of a parasitoid wasp and its biocontrol services through sublethal effects? PLoS ONE 8(9):e76548. doi:10.1371/journal.pone.0076548

    CAS  Article  Google Scholar 

  • Blommers LHM, Helsen HHM, Vaal FWNM (2004) Life history data of the rosy apple aphid Dysaphis plantaginea (Pass.) (Homopt., Aphididae) on plantain and as migrant to apple. J Pestic Sci 77:155–163

    Google Scholar 

  • Brunet JL, Badiou A, Belzunces L (2005) In vivo metabolic fate of [14C]-acetamiprid in six biological compartments of the honeybee, Apis mellifera L. Pest Manag Sci 61:742–748

    CAS  Article  Google Scholar 

  • Bunyan PJ, Jennings DM, Taylor A (1968) Organophosphorus poisoning. Properties of avian esterases. J Agric Food Chem 16:326–331

    CAS  Article  Google Scholar 

  • Campos MR, Picanço MC, Martins JC, Tomaz AC, Guedes RNC (2011) Insecticide selectivity and behavioral response of the earwig Doru luteipes. Crop Prot 30:1535–1540

    CAS  Article  Google Scholar 

  • Capowiez Y, Rault M, Mazzia C, Belzunces L (2003) Earthworm behaviour as a biomarker – a case study using imidacloprid. Pedobiologia 47:542–547

    Google Scholar 

  • Chanda SM, Mortensen SR, Moser VC, Padilla S (1997) Tissue-specific effects of chlorpyrifos on carboxylesterase and cholinesterase activity in adult rats: an in vitro and in vivo comparison. Fundam Appl Toxicol 38:148–157

    CAS  Article  Google Scholar 

  • Codron JM, Habib R, Jacquet F, Sauphanor B (2003) Bilan et perspectives environnementales de la filière arboriculture fruitière. In: Dron Ed. Agriculture, territoire, environnement dans les politiques européennes. Dossier de l’environnement de l’INRA 23. INRA, Paris

  • Costamagna AC, van der Werf W, Bianchi FJJA, Landis DA (2007) An exponential growth model with decreasing r captures bottom-up effects on the population growth of Aphis glycines Matsumura (Hemiptera: Aphididae). Agric For Entomol 9:297–305

    Article  Google Scholar 

  • De Castro AA, Corrêa AS, Legaspi JC, Guedes RNC, Serrão JE, Zanuncio JC (2013) Survival and behavior of the insecticide-exposed predators Podisus nigrispinus and Supputius cincticeps (Heteroptera: Pentatomidae). Chemosphere 93:1043–1050

    Article  Google Scholar 

  • Debras JF, Dussaud A, Rieux R, Dutoit T (2007) Recherche prospective sur le rôle « source » des haies en production fruitière intégrée. Le cas des perce-oreilles : Forficula auricularia L. et Forficula pubescens Gené. CR Biol 330:664–673

    Article  Google Scholar 

  • Dell’Omo G (2002) Behavioural ecotoxicology. John Wiley & Sons

  • Deng L, Dai J, Cao H, Xu M (2007) Effects of methamidophos on the predating behavior of Hylyphantes graminicola (Sundevall) (Araneae : Linyphiidae). Environ Toxicol Chem 26:478–482

    CAS  Article  Google Scholar 

  • Desneux N, Rafalimanana H, Kaiser L (2004) Dose–response relationship in lethal and behavioural effects of different insecticides on the parasitic wasp Aphidius ervi. Chemosphere 54:619–627

    CAS  Article  Google Scholar 

  • Desneux N, Decourtye A, Delpuech JM (2007) The sublethal effects of pesticides on beneficial arthropods. Annu Rev Entomol 52:81–106

    CAS  Article  Google Scholar 

  • Dib H, Simon S, Sauphanor B, Capowiez Y (2010) The role of natural enemies on the population dynamics of the rosy apple aphid, Dysaphis plantaginea Passerini (Hemiptera: Aphididae) in organic apple orchards in south-eastern France. Biol Control 55:97–109

    Article  Google Scholar 

  • Dib H, Jamont M, Sauphanor B, Capowiez Y (2011) Predation potency and intraguild interactions between generalist (Forficula auricularia) and specialist (Episyrphus balteatus) predators of the rosy apple aphid (Dysaphis plantaginea). Biol Control 59:90–97

    Article  Google Scholar 

  • Duso C, Ahmad S, Tirello P, Pozzebon A, Klaric V, Baldessari M, Malagnini V, Angeli G (2014) The impact of insecticides applied in apple orchards on the predatory mite Kampimodromus aberrans (Acari: Phytoseiidae). Exp Appl Acarol 62:391–414

    CAS  Article  Google Scholar 

  • Environmental Protection Agency EPA (2012) http://www.eap.org. Accessed 23 July 2012

  • Ellman GL, Courtney KD, Andreas JV, Featherstone RM (1961) A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem Pharmacol 7:88–95

    CAS  Article  Google Scholar 

  • Fenoglio MS, Trumper EV (2007) Influence of weather conditions and density of Doru luteipes (Dermaptera : Forficulidae) on Diatraea saccharalis (Lepidoptera : Crambidae) egg mortality. Environ Entomol 36:1159–1165

    CAS  Article  Google Scholar 

  • Ffrench-Constant RH, Vickerman GP (1985) Soil contact toxicity of insecticides to the european earwig Forficula auricularia [Dermaptera]. Entomophaga 30:271–278

    CAS  Article  Google Scholar 

  • Fogel MN, Schneider MI, Desneux N, Gonzalez B, Ronco AE (2013) Impact of the neonicotinoid acetamiprid on immature stages of the predator Eriopis connexa (Coleoptera: Coccinellidae). Ecotoxicology 22:1063–1071

    CAS  Article  Google Scholar 

  • García-de la Parra LM, Bautista-Covarrubias JC, Rivera-de la Rosa N, Betancourt-Lozano M, Guilhermino L (2006) Effects of methamidophos on acetylcholinesterase activity, behavior, and feeding rate of the white shrimp (Litopenaeus vannamei). Ecotoxicol Environ Saf 65:372–380

    Article  Google Scholar 

  • Gomori G (1953) Human esterases. J Lab Clin Med 42:445–453

    CAS  Google Scholar 

  • He Y, Zhao J, Zheng Y, Desneux N, Wu K (2012) Lethal effect of imidacloprid on the coccinellid predator Serangium japonicum and sublethal effects on predator voracity and on functional response to the whitefly Bemisia tabaci. Ecotoxicology 21:1291–1300

    CAS  Article  Google Scholar 

  • Henry M, Beguin M, Requier F, Rollin O, Odoux JF, Aupinel P, Aptel J, Tchamitchian S, Decourtye A (2012) A common pesticide decreases foraging success and survival in honey bees. Science 336:348–350

    CAS  Article  Google Scholar 

  • Hosokawa M (2008) Structure and catalytic properties of carboxylesterases isozymes involved in metabolic activation of prodrugs. Molecules 13:412–431

    CAS  Article  Google Scholar 

  • Jemec A, Tisler T, Drobne D, Sepcic K, Fournier D, Trebse P (2007) Comparative toxicity of imidacloprid, of its commercial liquid formulation and of diazinon to a non-target arthropod, the microcrustacean Daphnia magna. Chemosphere 68:1408–1418

    CAS  Article  Google Scholar 

  • Köhler HR, Triebskorn R (2013) Wildlife ecotoxicology of pesticides: can we track effects to the population level and beyond? Science 341:759–765

    Article  Google Scholar 

  • Kölliker M, Vancassel M (2007) Maternal attendance and the maintenance of family groups in common earwigs (Forficula auricularia): a field experiment. Ecol Entomol 32:24–27

    Article  Google Scholar 

  • Lenfant C, Sauphanor B (1992) Earwig in orchards: what for? Phytoma 445:44–52

    CAS  Google Scholar 

  • Little EE, Finger SE (1990) Swimming behavior as an indicator of sublethal toxicity in fish. Environ Toxicol Chem 9:13–19

    CAS  Article  Google Scholar 

  • Lordan J, Alegre S, Blanco R, Sarasua MJ, Alins G (2014) Aggregation behavior in the European earwig: response to impregnated shelters. Crop Pot 65:71–76

    Article  Google Scholar 

  • Malagnoux L, Capowiez Y, Rault M (2014) Tissue distribution, characterization and in vitro inhibition of B-esterases in the earwig Forficula auricularia. Chemosphere 112:456–464

    CAS  Article  Google Scholar 

  • Malagnoux L, Marliac G, Simon S, Rault M, Capowiez Y (2015) Management strategies in apple orchards influence earwig community. Chemosphere 124:156–162

    CAS  Article  Google Scholar 

  • Markwell MAK, Haas SM, Bieber LL, Tolbert NE (1978) A modification of the Lowry procedure to simplify protein determination in membrane and lipoprotein samples. Anal Biochem 87:206–210

    CAS  Article  Google Scholar 

  • Martinou AF, Seraphides N, Stavrinides MC (2014) Lethal and behavioral effects of pesticides on the insect predator Macrolophus pygmaeus. Chemosphere 96:167–173

    CAS  Article  Google Scholar 

  • Massoulié JM, Pezzementi L, Bon S, Krejci E, Valette FM (1993) Molecular and cellular biology of cholinesterases. Prog Neurobiol 41:31–91

    Article  Google Scholar 

  • Medina MH, Correa JA, Barata C (2007) Micro-evolution due to pollution: possible consequences for ecosystem responses to toxic stress. Chemosphere 67:2105–2114

    CAS  Article  Google Scholar 

  • Melvin SD, Wilson SP (2013) The utility of behavioral studies for aquatic toxicology testing: a meta-analysis. Chemosphere 93:2217–2223

    CAS  Article  Google Scholar 

  • Miles M, Dutton R (2003) Testing the effects of spinosad to predatory mites in laboratory extended laboratory, semi-field and field studies. IOBC/WPRS Bull 26:9–20

    Google Scholar 

  • Nunes B (2011) The use of cholinesterase in ecotoxicology. Rev Environ Contam Toxicol 212:29–59

    CAS  Google Scholar 

  • Peakall D (1992) Animal biomarkers as pollution indicators. Chapman & Hall, London

    Book  Google Scholar 

  • Peusens G, Moerkens R, Belien T, Gobin B (2009) Side effects of plant protection products and biological interactions on the european earwig Forficula auricularia L. Commun Agric Appl Biol Sci 74(2):411–417

    CAS  Google Scholar 

  • Piner P, Üner N (2012) In vivo acetylcholinesterase inhibition in tissues of spinosad exposed Oreochromis niloticus. Environ Toxicol Pharmacol 34:473–477

    CAS  Article  Google Scholar 

  • Rahmani S, Bandani AR (2013) Sublethal concentrations of thiamethoxam adversely affect life table parameters of the aphid predator, Hippodamia variegata (Goeze) (Coleoptera: Coccinellidae). Crop Prot 54:168–175

    CAS  Article  Google Scholar 

  • Reyes M, Collange B, Rault M, Casanelli S, Sauphanor B (2011) Combined detoxification mechanisms and target mutation fail to confer a high level of resistance to organophosphates in Cydia pomonella L. (Lepidoptera: Tortricidae). Pestic Biochem Physiol 99:25–32

    CAS  Article  Google Scholar 

  • Rezac M, Pekar S, Stara J (2010) The negative effect os some selective insecticides on the functional response of a potential biological control agent, the spider Philodromus cespitum. BioControl 55:503–510

    CAS  Article  Google Scholar 

  • Romeu-Dalmau C, Piñol J, Espadaler X (2012a) Friend or foe? The role of earwigs in a mediterranean organic citrus orchard. Biol Control 63:143–149

    Article  Google Scholar 

  • Romeu-Dalmau C, Gu P, Scott S, Grafton-Cardwell B (2012b) Earwigs: pests or beneficials in california citrus orchards? Citrograph 3:18–22

    Google Scholar 

  • Salgado VL (1998) Studies on the mode of action of spinosad: insect symptoms and physiological correlates. Pestic Biochem Physiol 60:91–102

    CAS  Article  Google Scholar 

  • Sanchez-Hernandez JC (2011) Pesticide biomarkers in terrestrial invertebrates, in M. Stoytcheva (Ed.), Pesticides in the Modern World – Pests control and pesticides exposure and toxicity assessment, InTech, pp. 213–240

  • Sauphanor B, Blaisinger P, Sureau F (1992) Méthode de laboratoire pour évaluer l’effet des pesticides sur Forficula auricularia L. (Dermaptera: Forficulidae). In: Hassan SA (ed) OILB-SROP Section Régionale Ouest Paléarctique, Guidelines for testing the effects of pesticides on beneficial organisms, vol 15. Bulletin OILB/SROP, pp 117–121

  • Sauphanor B, Chabrol L, Faivre d’Arcier F, Sureau F, Lenfant C (1993) Side effects of diflubenzuron on a pear psylla predator: Forficula auricularia. Entomophaga 38:163–174

    CAS  Article  Google Scholar 

  • Sauphanor B, Sureau F (1993) Aggregation behavior and interspecific relationships in Dermaptera. Oecologia 96:360–364

    Article  Google Scholar 

  • Sauphanor B, Berling M, Toubon JF, Reyes M, Delnatte J, Allemoz P (2006) Carpocapse des pommes cas de résistance au virus de la granulose en vergers biologiques : fruits et légumes. Phytoma-La Défense des Végétaux 590:24–27

    Google Scholar 

  • Scott GR, Sloman KA (2004) The effects of environmental pollutants on complex fish behaviour: integrating behavioural and physiological indicators of toxicity. Aquat Toxicol 68:369–392

    CAS  Article  Google Scholar 

  • Shaw PW, Wallis DR (2010) Susceptibility of the European earwig, Forficula auricularia, to insecticide residues on apple leaves. N Z Plant Prot 63:55–59

    CAS  Google Scholar 

  • Sogorb MA, Vilanova E (2002) Enzymes involved in the detoxification of organophosphorus, carbamate and pyrethroid insecticides through hydrolysis. Toxicol Lett 128:215–228

    CAS  Article  Google Scholar 

  • Symondson WOC, Sunderland KD, Greenstone MH (2002) Can generalist predators be effective biocontrol agents? Annu Rev Entomol 47:561–594

    CAS  Article  Google Scholar 

  • Tilton FA, Bammler TK, Gallagher EP (2011) Swimming impairment and acetylcholinesterase inhibition in zebrafish exposed to copper or chlorpyrifos separately, or as mixtures. Comp Biochem Physiol C 153:9–16

    Google Scholar 

  • Tirello P, Pozzebon A, Duso C (2013) The effect of insecticides on the non-target predatory mite Kampimodromus aberrans: laboratory studies. Chemosphere 93:1139–1144

    CAS  Article  Google Scholar 

  • Wheelock CE, Phillips BM, Anderson BS, Miller JL, Miller MJ, Hammock BD (2008) Applications of carboxylesterase activity in environmental monitoring and toxicity identification evaluations (TIEs). Rev Environ Contam Toxicol 195:117–178

    CAS  Google Scholar 

  • Yang H, Wang X, Zheng J, Wang G, Hong Q, Li S, Li R, Jiang J (2013) Biodegradation of acetamiprid by pigmentiphaga sp. D-2 and the degradation pathway. Int Biodeterior Biodegrad 85:95–102

    CAS  Article  Google Scholar 

Download references

Acknowledgments

The authors are very grateful to Juan-Carlos Sanchez-Hernandez from the University of Castilla La Mancha (Toledo, Spain) for his valuable comments. We would like to thank Odile Mascle for maintaining aphid breeding and Hazem Dib who developed the predation protocol before returning to Syria. L. Malagnoux is grateful to the Provence-Alpes-Côte d’Azur Region (France) for her doctoral fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Magali Rault.

Additional information

Responsible editor: Philippe Garrigues

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Malagnoux, L., Capowiez, Y. & Rault, M. Impact of insecticide exposure on the predation activity of the European earwig Forficula auricularia . Environ Sci Pollut Res 22, 14116–14126 (2015). https://doi.org/10.1007/s11356-015-4520-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-015-4520-9

Keywords

  • Earwig
  • Neurotoxic insecticides
  • Sublethal effect
  • Predation
  • B-esterases