Skip to main content

Advertisement

Log in

Diversity of active microbial communities subjected to long-term exposure to chemical contaminants along a 40-year-old sediment core

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

In estuarine ecosystems, metallic and organic contaminants are mainly associated with fine grain sediments which settle on mudflats. Over time, the layers of sediment accumulate and are then transformed by diagenetic processes mainly controlled by microbial activity, recording the history of the estuary’s chemical contamination. In an environment of this specific type, we investigated the evolution of the chemical contamination and the structure of both total and active microbial communities, based on PhyloChip analysis of a 4.6-m core corresponding to a 40-year sedimentary record. While the archaeal abundance remained constant along the core, a decrease by one order of magnitude in the bacterial abundance was observed with depth. Both total and active microbial communities were dominated by Proteobacteria, Actinobacteria, and Firmicutes in all sediment samples. Among Proteobacteria, alpha-Proteobacteria dominated both total (from 37 to 60 %) and metabolically active (from 19.7 to 34.6 %) communities, including the Rhizobiales, Rhodobacter, Caulobacterales, and Sphingomonadales orders. Co-inertia analysis revealed a relationship between polycyclic aromatic hydrocarbons, zinc and some polychlorobiphenyls concentrations, and the structure of total and active microbial communities in the oldest and most contaminated sediments (from 1970 to 1975), suggesting that long-term exposure to chemicals shaped the structure of the microbial community.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  • Abou-Shanab RAI, Van Berkum P, Angle JS (2007) Heavy metal resistance and genotypic analysis of metal resistance genes in gram-positive and gram-negative bacteria present in Ni-rich serpentine soil and in the rhizosphere of Alyssum murale. Chemosphere 68:360–367

    Article  CAS  Google Scholar 

  • Akob DM, Mills HJ, Kostka JE (2007) Metabolically active microbial communities in uranium-contaminated subsurface sediments. FEMS Microbiol Ecol 59:95–107

    Article  CAS  Google Scholar 

  • Beazley MJ, Martinez RJ, Rajan S et al (2012) Microbial community analysis of a coastal salt marsh affected by the Deepwater Horizon oil spill. PLoS One 7, e41305

    Article  CAS  Google Scholar 

  • Berdugo‐Clavijo C, Dong X, Soh J et al (2012) Methanogenic biodegradation of two-ringed polycyclic aromatic hydrocarbons. FEMS Microbiol Ecol 81:124–133

    Article  CAS  Google Scholar 

  • Berner RA (1980) Early diagenesis: a theoretical approach. Princeton University Press

  • Billon G, Ouddane B, Boughriet A (2001) Chemical speciation of sulfur compounds in surface sediments from three bays (Fresnaye, Seine and Authie) in northern France, and identification of some factors controlling their generation. Talanta 53:971–981

    Article  CAS  Google Scholar 

  • Boonyatumanond R, Wattayakorn G, Togo A, Takada H (2006) Distribution and origins of polycyclic aromatic hydrocarbons (PAHs) in riverine, estuarine, and marine sediments in Thailand. Mar Pollut Bull 52:942–956

    Article  CAS  Google Scholar 

  • Bouskill NJ, Barker-Finkel J, Galloway TS et al (2010) Temporal bacterial diversity associated with metal-contaminated river sediments. Ecotoxicology 19:317–328

    Article  CAS  Google Scholar 

  • Breuker A, Köweker G, Blazejak A, Schippers A (2011) The deep biosphere in terrestrial sediments in the Chesapeake Bay area, Virginia, USA. Front Microbiol 2

  • Bruce KD, Hiorns WD, Hobman JL et al (1992) Amplification of DNA from native populations of soil bacteria by using the polymerase chain reaction. Appl Environ Microbiol 58:3413–3416

    CAS  Google Scholar 

  • Budzinski H, Jones I, Bellocq J et al (1997) Evaluation of sediment contamination by polycyclic aromatic hydrocarbons in the Gironde estuary. Mar Chem 58:85–97

    Article  CAS  Google Scholar 

  • Burguener GF, Maldonado MJ, Revale S et al (2014) Draft genome sequence of the polyextremophilic Halorubrum sp. strain AJ67, isolated from hyperarsenic lakes in the Argentinian Puna. Genome Announc 2:e01096–13

    Article  Google Scholar 

  • Cachot J, Geffard O, Augagneur S et al (2006) Evidence of genotoxicity related to high PAH content of sediments in the upper part of the Seine estuary (Normandy, France). Aquat Toxicol 79:257–267

    Article  CAS  Google Scholar 

  • Cachot J, Cherel Y, Larcher T et al (2013) Histopathological lesions and DNA adducts in the liver of European flounder (Platichthys flesus) collected in the Seine estuary versus two reference estuarine systems on the French Atlantic coast. Environ Sci Pollut Res 20:723–737

    Article  CAS  Google Scholar 

  • Canfield DE, Thamdrup B (2009) Towards a consistent classification scheme for geochemical environments, or, why we wish the term “suboxic”would go away. Geobiology 7:385–392

    Article  CAS  Google Scholar 

  • Carignan J, Hild P, Mevelle G et al (2001) Routine analyses of trace elements in geological samples using flow injection and low pressure on-line liquid chromatography coupled to ICP-MS: a study of geochemical reference materials BR, DR-N, UB-N, AN-G and GH. Geostand Newsl 25:187–198

    Article  CAS  Google Scholar 

  • Chevreuil M, Carru A-M, Chesterikoff A et al (1995) Contamination of fish from different areas of the river Seine (France) by organic (PCB and pesticides) and metallic (Cd, Cr, Cu, Fe, Mn, Pb and Zn) micropollutants. Sci Total Environ 162:31–42

    Article  CAS  Google Scholar 

  • Chiffoleau J-F, Auger D, Chartier E et al (2001) Spatiotemporal changes in cadmium contamination in the Seine estuary (France). Estuaries 24:1029–1040

    Article  CAS  Google Scholar 

  • Choudhury R, Srivastava S (2001) Mechanism of zinc resistance in Pseudomonas putida strain S4. World J Microbiol Biotechnol 17:149–153

    Article  CAS  Google Scholar 

  • Copard Y, Di-Giovanni C, Martaud T et al (2006) Using Rock-Eval 6 pyrolysis for tracking fossil organic carbon in modern environments: implications for the roles of erosion and weathering. Earth Surf Process Landf 31:135–153

    Article  CAS  Google Scholar 

  • Coulon F, Chronopoulou P-M, Fahy A et al (2012) Central role of dynamic tidal biofilms dominated by aerobic hydrocarbonoclastic bacteria and diatoms in the biodegradation of hydrocarbons in coastal mudflats. Appl Environ Microbiol 78:3638–3648

    Article  CAS  Google Scholar 

  • Cravo-Laureau C, Duran R (2014) Marine coastal sediments microbial hydrocarbon degradation processes: contribution of experimental ecology in the Omics’ era. Name Front Microbiol 5:39

    Google Scholar 

  • Dash HR, Mangwani N, Chakraborty J et al (2013) Marine bacteria: potential candidates for enhanced bioremediation. Appl Microbiol Biotechnol 97:561–571

    Article  CAS  Google Scholar 

  • Dell’Anno A, Fabiano M, Duineveld GCA et al (1998) Nucleic acid (DNA, RNA) quantification and RNA/DNA ratio determination in marine sediments: comparison of spectrophotometric, fluorometric, and highperformance liquid chromatography methods and estimation of detrital DNA. Appl Environ Microbiol 64:3238–3245

    Google Scholar 

  • Dhote M, Juwarkar A, Kumar A et al (2010) Biodegradation of chrysene by the bacterial strains isolated from oily sludge. World J Microbiol Biotechnol 26:329–335

    Article  CAS  Google Scholar 

  • Dolédec S, Chessel D (1994) Co‐inertia analysis: an alternative method for studying species–environment relationships. Freshw Biol 31:277–294

    Article  Google Scholar 

  • Dray S, Dufour A-B (2007) The ade4 package: implementing the duality diagram for ecologists. J Stat Softw 22:1–20

    Article  Google Scholar 

  • Feris K, Ramsey P, Frazar C et al (2003) Differences in hyporheic-zone microbial community structure along a heavy-metal contamination gradient. Appl Environ Microbiol 69:5563–5573

    Article  CAS  Google Scholar 

  • Fernandes MB, Sicre M-A, Boireau A, Tronczynski J (1997) Polyaromatic hydrocarbon (PAH) distributions in the Seine River and its estuary. Mar Pollut Bull 34:857–867

    Article  CAS  Google Scholar 

  • Fernández-Luqueño F, Valenzuela-Encinas C, Marsch R et al (2011) Microbial communities to mitigate contamination of PAHs in soil—possibilities and challenges: a review. Environ Sci Pollut Res 18:12–30

    Article  CAS  Google Scholar 

  • Gillan DC, Danis B, Pernet P et al (2005) Structure of sediment-associated microbial communities along a heavy-metal contamination gradient in the marine environment. Appl Environ Microbiol 71:679–690

    Article  CAS  Google Scholar 

  • Gillan DC, Baeyens W, Bechara R et al (2012) Links between bacterial communities in marine sediments and trace metal geochemistry as measured by in situ DET/DGT approaches. Mar Pollut Bull 64:353–362

    Article  CAS  Google Scholar 

  • Gremion F, Chatzinotas A, Harms H (2003) Comparative 16S rDNA and 16S rRNA sequence analysis indicates that Actinobacteria might be a dominant part of the metabolically active bacteria in heavy metal‐contaminated bulk and rhizosphere soil. Environ Microbiol 5:896–907

    Article  CAS  Google Scholar 

  • Grosbois C, Meybeck M, Lestel L et al (2012) Severe and contrasted polymetallic contamination patterns (1900–2009) in the Loire River sediments (France). Sci Total Environ 435:290–305

    Article  CAS  Google Scholar 

  • Grousset FE, Jouanneau JM, Castaing P et al (1999) A 70 year record of contamination from industrial activity along the Garonne River and its tributaries (SW France). Estuar Coast Shelf Sci 48:401–414

    Article  CAS  Google Scholar 

  • Hamzeh M, Ouddane B, El-daye M, Halwani J (2013) Profile of trace metals accumulation in core sediment from Seine river estuary (docks basin). Environ Technol 34:1107–1116

    Article  CAS  Google Scholar 

  • Hamzeh M, Ouddane B, Daye M, Halwani J (2014) Trace metal mobilization from surficial sediments of the Seine river estuary. Water Air Soil Pollut 225:1–15

    Article  CAS  Google Scholar 

  • Hernandez‐Raquet G, Budzinski H, Caumette P et al (2006) Molecular diversity studies of bacterial communities of oil polluted microbial mats from the Etang de Berre (France). FEMS Microbiol Ecol 58:550–562

    Article  CAS  Google Scholar 

  • Higson FK (1991) Degradation of xenobiotics by white rot fungi. Rev Environ Contam Toxicol Springer, pp 111–152

  • Hou L-H, Dutta SK (2000) Phylogenetic characterization of several para‐and meta‐PCB dechlorinating Clostridium species: 16s rDNA sequence analyses. Lett Appl Microbiol 30:238–243

    Article  CAS  Google Scholar 

  • Imfeld G, Vuilleumier S (2012) Measuring the effects of pesticides on bacterial communities in soil: a critical review. Eur J Soil Biol 49:22–30

    Article  CAS  Google Scholar 

  • Jones MD, Crandell DW, Singleton DR, Aitken MD (2011) Stable‐isotope probing of the polycyclic aromatic hydrocarbon‐degrading bacterial guild in a contaminated soil. Environ Microbiol 13:2623–2632

    Article  CAS  Google Scholar 

  • Kaci A, Petit F, Lesueur P et al (2014) Distinct diversity of the czcA gene in two sedimentary horizons from a contaminated estuarine core. Environ Sci Pollut Res Int 21:10787–10802. doi:10.1007/s11356-014-3029-y

    Article  CAS  Google Scholar 

  • Kim B-S, Oh H-M, Kang H et al (2004) Remarkable bacterial diversity in the tidal flat sediment as revealed by 16S rDNA analysis. J Microbiol Biotechnol 14:205–211

    CAS  Google Scholar 

  • Kjellerup BV, Paul P, Ghosh U, et al (2012) Spatial distribution of PCB dechlorinating bacteria and activities in contaminated soil. Appl Environ Soil Sci

  • Köpke B, Wilms R, Engelen B et al (2005) Microbial diversity in coastal subsurface sediments: a cultivation approach using various electron acceptors and substrate gradients. Appl Environ Microbiol 71:7819–7830

    Article  CAS  Google Scholar 

  • Larose C, Prestat E, Cecillon S et al (2013) Interactions between snow chemistry, mercury inputs and microbial population dynamics in an arctic snowpack. PLoS One 8, e79972

    Article  Google Scholar 

  • Le Cloarec M-F, Bonte PH, Lestel L et al (2011) Sedimentary record of metal contamination in the Seine River during the last century. Phys Chem Earth Parts ABC 36:515–529

    Article  Google Scholar 

  • Leloup J, Fossing H, Kohls K et al (2009) Sulfate-reducing bacteria in marine sediment (Aarhus Bay, Denmark): abundance and diversity related to geochemical zonation. Environ Microbiol 11:1278–1291

    Article  CAS  Google Scholar 

  • Lesourd S, Lesueur P, Brun-Cottan JC et al (2003) Seasonal variations in the characteristics of superficial sediments in a macrotidal estuary (the Seine inlet, France). Estuar Coast Shelf Sci 58:3–16

    Article  Google Scholar 

  • Li C-H, Zhou H-W, Wong Y-S, Tam NF-Y (2009) Vertical distribution and anaerobic biodegradation of polycyclic aromatic hydrocarbons in mangrove sediments in Hong Kong, South China. Sci Total Environ 407:5772–5779

    Article  CAS  Google Scholar 

  • Liu M, Baugh PJ, Hutchinson SM et al (2000) Historical record and sources of polycyclic aromatic hydrocarbons in core sediments from the Yangtze Estuary, China. Environ Pollut 110:357–365

    Article  CAS  Google Scholar 

  • Looper JK, Cotto A, Kim B-Y et al (2013) Microbial community analysis of Deepwater Horizon oil-spill impacted sites along the Gulf coast using functional and phylogenetic markers. Environ Sci Process Impacts 15:2068–2079

    Article  CAS  Google Scholar 

  • Mai H, Cachot J, Brune J et al (2012) Embryotoxic and genotoxic effects of heavy metals and pesticides on early life stages of Pacific oyster (Crassostrea gigas). Mar Pollut Bull 64:2663–2670

    Article  CAS  Google Scholar 

  • Marchesi JR, Sato T, Weightman AJ, et al (1998) Design and evaluation of useful bacterium-specific PCR primers that amplify genes coding for bacterial 16S rRNA. Appl Environ Microbiol 64:795–799

  • Meybeck M, Lestel L, Bonté P et al (2007) Historical perspective of heavy metals contamination (Cd, Cr, Cu, Hg, Pb, Zn) in the Seine River basin (France) following a DPSIR approach (1950–2005). Sci Total Environ 375:204–231

    Article  CAS  Google Scholar 

  • Mills HJ, Martinez RJ, Story S, Sobecky PA (2005) Characterization of microbial community structure in Gulf of Mexico gas hydrates: comparative analysis of DNA-and RNA-derived clone libraries. Appl Environ Microbiol 71:3235–3247

    Article  CAS  Google Scholar 

  • Minier C, Abarnou A, Jaouen‐Madoulet A et al (2006) A pollution‐monitoring pilot study involving contaminant and biomarker measurements in the Seine Estuary, France, using zebra mussels (Dreissena polymorpha). Environ Toxicol Chem 25:112–119

    Article  CAS  Google Scholar 

  • Motelay-Massei A, Ollivon D, Garban B, Chevreuil M (2002) Atmospheric deposition of toxics onto the Seine Estuary, France: example of polycyclic aromatic hydrocarbons. Atmospheric Chem Phys Discuss 2:1351–1369

    Article  Google Scholar 

  • Motelay-Massei A, Ollivon D, Garban B et al (2004) Distribution and spatial trends of PAHs and PCBs in soils in the Seine River basin, France. Chemosphere 55:555–565

    Article  CAS  Google Scholar 

  • Muyzer G, De Waal EC, Uitterlinden AG (1993) Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Appl Environ Microbiol 59:695–700

    CAS  Google Scholar 

  • Niepceron M, Portet‐Koltalo F, Merlin C et al (2010) Both Cycloclasticus spp. and Pseudomonas spp. as PAH‐degrading bacteria in the Seine estuary (France). FEMS Microbiol Ecol 71:137–147

    Article  CAS  Google Scholar 

  • Nogales B, Moore ER, Llobet-Brossa E et al (2001) Combined use of 16S ribosomal DNA and 16S rRNA to study the bacterial community of polychlorinated biphenyl-polluted soil. Appl Environ Microbiol 67:1874–1884

    Article  CAS  Google Scholar 

  • Nomura M, Gourse R, Baughman G (1984) Regulation of the synthesis of ribosomes and ribosomal components. Annu Rev Biochem 53:75–117

    Article  CAS  Google Scholar 

  • Oger C, Berthe T, Quillet L et al (2001) Estimation of the abundance of the cadmium resistance gene cadA in microbial communities in polluted estuary water. Res Microbiol 152:671–678

    Article  CAS  Google Scholar 

  • Peng A, Liu J, Gao Y, Chen Z (2013) Distribution of endophytic bacteria in Alopecurus aequalis sobol and Oxalis corniculata L. from soils contaminated by polycyclic aromatic hydrocarbons. PLoS One 8, e83054

    Article  CAS  Google Scholar 

  • Plassart P, Akpa Vinceslas M, Gangneux C et al (2008) Molecular and functional responses of soil microbial communities under grassland restoration. Agric Ecosyst Environ 127:286–293

    Article  CAS  Google Scholar 

  • Pratt B, Riesen R, Johnston CG (2012) PLFA analyses of microbial communities associated with PAH-contaminated riverbank sediment. Microb Ecol 64:680–691

    Article  CAS  Google Scholar 

  • Ramond J-B, Berthe T, Lafite R et al (2008) Relationships between hydrosedimentary processes and occurrence of mercury-resistant bacteria (merA) in estuary mudflats (Seine, France). Mar Pollut Bull 56:1168–1176

    Article  CAS  Google Scholar 

  • Rasmussen LD, Sørensen SJ (2001) Effects of mercury contamination on the culturable heterotrophic, functional and genetic diversity of the bacterial community in soil. FEMS Microbiol Ecol 36:1–9

    Article  CAS  Google Scholar 

  • Rocchetti L, Beolchini F, Hallberg KB et al (2012) Effects of prokaryotic diversity changes on hydrocarbon degradation rates and metal partitioning during bioremediation of contaminated anoxic marine sediments. Mar Pollut Bull 64:1688–1698

    Article  CAS  Google Scholar 

  • Savage KN, Krumholz LR, Gieg LM et al (2010) Biodegradation of low‐molecular‐weight alkanes under mesophilic, sulfate‐reducing conditions: metabolic intermediates and community patterns. FEMS Microbiol Ecol 72:485–495

    Article  CAS  Google Scholar 

  • Silby MW, Cerdeño-Tárraga AM, Vernikos GS et al (2009) Genomic and genetic analyses of diversity and plant interactions of Pseudomonas fluorescens. Genome Biol 10:R51

    Article  CAS  Google Scholar 

  • Srivastava P, Kowshik M (2013) Mechanisms of metal resistance and homeostasis in haloarchaea. Archaea

  • Takai K, Horikoshi K (2000) Rapid detection and quantification of members of the archaeal community by quantitative PCR using fluorogenic probes. Appl Environ Microbiol 66:5066–5072

    Article  CAS  Google Scholar 

  • Toes A-CM, Finke N, Kuenen JG, Muyzer G (2008) Effects of deposition of heavy-metal-polluted harbor mud on microbial diversity and metal resistance in sandy marine sediments. Arch Environ Contam Toxicol 55:372–385

    Article  CAS  Google Scholar 

  • Vaalgamaa S, Conley DJ (2008) Detecting environmental change in estuaries: nutrient and heavy metal distributions in sediment cores in estuaries from the Gulf of Finland, Baltic Sea. Estuar Coast Shelf Sci 76:45–56

    Article  Google Scholar 

  • Van Ael E, Covaci A, Blust R, Bervoets L (2012) Persistent organic pollutants in the Scheldt estuary: environmental distribution and bioaccumulation. Environ Int 48:17–27

    Article  CAS  Google Scholar 

  • Van der Oost R, Beyer J, Vermeulen NP (2003) Fish bioaccumulation and biomarkers in environmental risk assessment: a review. Environ Toxicol Pharmacol 13:57–149

    Article  Google Scholar 

  • Verrhiest GJ, Clement B, Volat B et al (2002) Interactions between a polycyclic aromatic hydrocarbon mixture and the microbial communities in a natural freshwater sediment. Chemosphere 46:187–196

    Article  CAS  Google Scholar 

  • Vicquelin L, Leray-Forget J, Peluhet L et al (2011) A new spiked sediment assay using embryos of the Japanese medaka specifically designed for a reliable toxicity assessment of hydrophobic chemicals. Aquat Toxicol 105:235–245

    Article  CAS  Google Scholar 

  • Voorspoels S, Covaci A, Maervoet J, Schepens P (2004) PBDEs in marine and freshwater sediments from Belgium: levels, profiles and relations with biota. J Environ Monit 6:914–918

    Article  CAS  Google Scholar 

  • Vrel A, Boust D, Lesueur P et al (2013) Dating of sediment record at two contrasting sites of the Seine River using radioactivity data and hydrological time series. J Environ Radioact 126:20–31. doi:10.1016/j.jenvrad.2013.06.005

    Article  CAS  Google Scholar 

  • Wang Y, Wu Y, Pi N, Tam NF (2014) Investigation of microbial community structure in constructed mangrove microcosms receiving wastewater-borne polycyclic aromatic hydrocarbons (PAHs) and polybrominated diphenyl ethers (PBDEs). Environ Pollut 187:136–144

    Article  CAS  Google Scholar 

  • Wilms R, Sass H, Köpke B et al (2006) Specific bacterial, archaeal, and eukaryotic communities in tidal-flat sediments along a vertical profile of several meters. Appl Environ Microbiol 72:2756–2764

    Article  CAS  Google Scholar 

  • Wu G, Kechavarzi C, Li X et al (2013) Influence of mature compost amendment on total and bioavailable polycyclic aromatic hydrocarbons in contaminated soils. Chemosphere 90:2240–2246

    Article  CAS  Google Scholar 

  • Yakimov MM, Denaro R, Genovese M et al (2005) Natural microbial diversity in superficial sediments of Milazzo Harbor (Sicily) and community successions during microcosm enrichment with various hydrocarbons. Environ Microbiol 7:1426–1441

    Article  CAS  Google Scholar 

  • Yan T, LaPara TM, Novak PJ (2006) The reductive dechlorination of 2,3,4,5‐tetrachlorobiphenyl in three different sediment cultures: evidence for the involvement of phylogenetically similar Dehalococcoides‐like bacterial populations. FEMS Microbiol Ecol 55:248–261

    Article  CAS  Google Scholar 

  • Yen JH, Liao WC, Chen WC, Wang YS (2009) Interaction of polybrominated diphenyl ethers (PBDEs) with anaerobic mixed bacterial cultures isolated from river sediment. J Hazard Mater 165:518–524

    Article  CAS  Google Scholar 

  • Zegers BN, Lewis WE, Booij K et al (2003) Levels of polybrominated diphenyl ether flame retardants in sediment cores from Western Europe. Environ Sci Technol 37:3803–3807

    Article  CAS  Google Scholar 

  • Zhang H, Kallimanis A, Koukkou AI, Drainas C (2004) Isolation and characterization of novel bacteria degrading polycyclic aromatic hydrocarbons from polluted Greek soils. Appl Microbiol Biotechnol 65:124–131

    Article  CAS  Google Scholar 

  • Zhang D-C, Mörtelmaier C, Margesin R (2012) Characterization of the bacterial archaeal diversity in hydrocarbon-contaminated soil. Sci Total Environ 421:184–196

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Seine-Aval scientific research program. The first author holds a research grant from the Haute-Normandie Regional council.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thierry Berthe.

Additional information

Responsible editor: Philippe Garrigues

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 42580 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaci, A., Petit, F., Fournier, M. et al. Diversity of active microbial communities subjected to long-term exposure to chemical contaminants along a 40-year-old sediment core. Environ Sci Pollut Res 23, 4095–4110 (2016). https://doi.org/10.1007/s11356-015-4506-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-015-4506-7

Keywords