Skip to main content

Mercurial exposure of residents of Santarém and Oriximiná cities (Pará, Brazil) through fish consumption

Abstract

A survey of the mercurial exposure of residents of Santarém and Oriximiná showed a differential mercurial impregnation between men and women. At the level of both cities, the mean hair mercury concentrations were 1.5 ± 0.5 (90th and 95th percentiles: 2.8 and 4.3) and 2.52 ± 0.09 μg g Hg/g (90th and 95th percentiles: 4.7 and 8.1) for women and men, respectively. The mercurial contamination appeared significantly closely linked to the daily amount of consumed fish. Carnivore species pescada branca (Plagioscion squamosissimus) and apapá (Pellona castelnaeana) and non-carnivore species pacú (Mylossoma duriventre) and aracú (Schizodon fasciatus) were consumed by 22, 19, 55 and 25 % of people, respectively, and the mean mercury concentrations within fish flesh were 1.44 ± 0.11, 1.66 ± 0.19, 0.48 ± 0.09 and 0.49 ± 0.06 μg/g dry weight, respectively. Men aged above 35 were significantly more contaminated than those below. The mean hair concentrations of men were 5.20 ± 1.25 and 1.50 ± 0.22 μg/g, for those aged above 35 and below, respectively. The probability for women of childbearing age from both cities to present a hair mercury concentration above 1 μg Hg/g (corresponding to the US Environmental Protection Agency reference dose) was equal to 0.30 (95 % confidence interval of 0.24–0.36). The probability of hair mercury concentration to be above the lowest observable adverse effect level (LOAEL) (0.3 μg Hg/g) was equal to 0.79 (95 % confidence interval: 0.73–0.86).

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Achard-Joris M, Bourdineaud JP (2006) Heterologous expression of bacterial and human multidrug resistance proteins protect Escherichia coli against mercury and zinc contamination. Biometals 19:695–704

    CAS  Article  Google Scholar 

  2. Achard-Joris M, van den Berg van Saparoea HB, Driessen AJ, Bourdineaud JP (2005) Heterologously expressed bacterial and human multidrug resistance proteins confer cadmium resistance to Escherichia coli. Biochemistry 44:5916–5922

    CAS  Article  Google Scholar 

  3. Akagi H, Malm O, Kinjo Y, Harada M, Branches FJP, Pfeiffer WC, Kato H (1995) Methylmercury pollution in the Amazon, Brazil. Sci Total Environ 175:85–95

    CAS  Article  Google Scholar 

  4. Ballatori N (2002) Transport of toxic metals by molecular mimicry. Environ Health Perspect 110(Suppl 5):689–694

    CAS  Article  Google Scholar 

  5. Ballatori N, Wang W, Lieberman MW (1998) Accelerated methylmercury elimination in γ-glutamyl transpeptidase-deficient mice. Am J Pathol 152:1049–1055

    CAS  Google Scholar 

  6. Bass DA, Hickock D, Quig D, Urek K (2001) Trace element analysis in hair: factors determining accuracy, precision, and reliability. Altern Med Rev 6:472–481

    CAS  Google Scholar 

  7. Beltran-Pedreros S, Zuanon J, Galdino Leite R, Pacheco Peleja JR, Barros Mendonça A, Rider Forsberg B (2011) Mercury bioaccumulation in fish of commercial importance from different trophic categories in an Amazon floodplain lake. Neotrop Ichthyology 9:901–908

    Article  Google Scholar 

  8. Berzas Nevado JJ, Rodríguez Martín-Doimeadios RC, Guzmán Bernardo FJ, Jiménez Moreno M, Herculano AM, do Nascimento JL, Crespo-López ME (2010) Mercury in the Tapajós river basin, Brazilian amazon: a review. Environ Int 36:593–608

    CAS  Article  Google Scholar 

  9. Boudou A, Maury-Brachet R, Coquery M, Durrieu G, Cossa D (2005) Synergic effect of gold mining and damming on mercury contamination in fish. Environ Sci Technol 39:2448–2454

    CAS  Article  Google Scholar 

  10. Castilhos ZC, Bidone ED, Lacerda LD (1998) Increase of the background human exposure to mercury through fish consumption due to gold mining at the Tapajós River region, Pará state, Amazon. Bull Environ Contam Toxicol 61:202–209

    CAS  Article  Google Scholar 

  11. Chevrier C, Sullivan K, White RF, Comtois C, Cordier S, Grandjean P (2009) Qualitative assessment of visuospatial errors in mercury-exposed Amazonian children. Neurotoxicology 30:37–46

    CAS  Article  Google Scholar 

  12. Clarkson TW (2002) The three modern faces of mercury. Environ Health Perspect 110(Suppl 1):11–23

    CAS  Article  Google Scholar 

  13. Cordier S, Garel M, Mandereau L, Morcel H, Doineau P, Gosme-Seguret S, Josse D, White R, Amiel-Tison C (2002) Neurodevelopmental investigations among methylmercury-exposed children in French Guiana. Environ Res 89:1–11

    CAS  Article  Google Scholar 

  14. Coudret R, Durrieu G, Saracco J (2015) Comparison of kernel density estimators with assumption on number of modes. Commun Stat Simulat Comput 44(1):196–216

    Article  Google Scholar 

  15. de Souza Lima AP, Sarkis Muller RC, de Souza Sarkis JE, Nahum Alves C, da Silva Bentes MH, Brabo E, de Oliveira SE (2000) Mercury contamination in fish from Santarém, Pará, Brazil. Environ Res 83:117–122

    Article  Google Scholar 

  16. Díez S, Montuori P, Querol X, Bayona JM (2007) Total mercury in the hair of children by combustion atomic absorption spectrometry (Comb-AAS). J Anal Toxicol 31:144–149

    Article  Google Scholar 

  17. Díez S, Montuori P, Pagano A, Sarnacchiaro P, Bayona JM, Triassi M (2008) Hair mercury levels in an urban population from southern Italy: fish consumption as a determinant of exposure. Environ Int 34:162–167

    Article  Google Scholar 

  18. Díez S, Delgado S, Aguilera I, Astray J, Pérez-Gómez B, Torrent M, Sunyer J, Bayona JM (2009) Prenatal and early childhood exposure to mercury and methylmercury in Spain, a high-fish-consumer country. Arch Environ Contam Toxicol 56:615–622

    Article  Google Scholar 

  19. Dolbec J, Mergler D, Sousa Passos CJ, Sousa de Morais S, Lebel J (2000) Methylmercury exposure affects motor performance of a riverine population of the Tapajós river, Brazilian amazon. Int Arch Occup Environ Health 73:195–203

    CAS  Article  Google Scholar 

  20. Durrieu G, Briollais L (2009) Sequential determination of sample size for robust linear regression: application to microarray experimental designs. J Am Stat Assoc 104:650–660

    CAS  Article  Google Scholar 

  21. Freire C, Ramos R, Lopez-Espinosa MJ, Díez S, Vioque J, Ballester F, Fernández MF (2010) Hair mercury levels, fish consumption, and cognitive development in preschool children from Granada, Spain. Environ Res 110:96–104

    CAS  Article  Google Scholar 

  22. Fréry N, Maury-Brachet R, Maillot E, Deheeger M, de Mérona B, Boudou A (2001) Gold-mining activities and mercury contamination of native Amerindian communities in French Guiana: key role of fish in dietary uptake. Environ Health Perspect 109:449–456

    Article  Google Scholar 

  23. Fujimura M, Matsuyama A, Harvard JP, Bourdineaud JP, Nakamura K (2012) Mercury contamination in humans in upper Maroni, French Guiana between 2004 and 2009. Bull Environ Contam Toxicol 88:135–139

    CAS  Article  Google Scholar 

  24. Gilbert SG, Grant-Webster KS (1995) Neurobehavioral effects of developmental methylmercury exposure. Environ Health Perspect 103(Suppl 6):135–142

    CAS  Article  Google Scholar 

  25. Grandjean P, Weihe P, White RF, Debes F, Araki S, Yokoyama K, Murata K, Sørensen N, Dahl R, Jørgensen PJ (1997) Cognitive deficit in 7-year-old children with prenatal exposure to methylmercury. Neurotoxicol Teratol 19:417–428

    CAS  Article  Google Scholar 

  26. Grandjean P, White RF, Nielsen A, Cleary D, de Oliveira-Santos EC (1999) Methylmercury neurotoxicity in Amazonian children downstream from gold mining. Environ Health Perspect 107:587–591

    CAS  Article  Google Scholar 

  27. Hacon S, Yokoo E, Valente J, Campos RC, da Silva VA, de Menezes AC, de Moraes LP, Ignotti E (2000) Exposure to mercury in pregnant women from Alta Floresta-Amazon Basin, Brazil. Environ Res 84:204–210

    CAS  Article  Google Scholar 

  28. Heller-Zeisler SF, Parr RM, Zeisler R (1998) Certification of two human hair reference materials issued by the international atomic energy agency. Fresenius J Anal Chem 360:419–422

    CAS  Article  Google Scholar 

  29. Huel G, Sahuquillo J, Debotte G, Oury JF, Takser L (2008) Hair mercury negatively correlates with calcium pump activity in human term newborns and their mothers at delivery. Environ Health Perspect 116:263–267

    CAS  Article  Google Scholar 

  30. Johnsson C, Sällsten G, Schütz A, Sjörs A, Barregård L (2004) Hair mercury levels versus freshwater fish consumption in household members of Swedish angling societies. Environ Res 96:257–263

    CAS  Article  Google Scholar 

  31. Knobeloch L, Gliori G, Anderson H (2007) Assessment of methylmercury exposure in Wisconsin. Environ Res 103:205–210

    CAS  Article  Google Scholar 

  32. Lebel J, Mergler D, Lucotte M, Amorim M, Dolbec J, Miranda D, Arantès G, Rheault I, Pichet P (1996) Evidence of early nervous system dysfunction in Amazonian populations exposed to low-levels of methylmercury. Neurotoxicology 17:157–168

    CAS  Google Scholar 

  33. Lebel J, Mergler D, Branches F, Lucotte M, Amorim M, Larribe F, Dolbec J (1998) Neurotoxic effects of low-level methylmercury contamination in the Amazonian basin. Environ Res 79:20–32

    CAS  Article  Google Scholar 

  34. Malm O, Branches FJP, Akagi H, Castro MB, Pfeiffer WC, Harada M, Bastos WR, Kato H (1995) Mercury and methylmercury in fish and human hair from the Tapajós river basin, Brazil. Sci Total Environ 175:141–150

    CAS  Article  Google Scholar 

  35. Marques RC, Garrofe Dórea J, Rodrigues Bastos W, de Freitas RM, de Freitas FM, Malm O (2007) Maternal mercury exposure and neuro-motor development in breastfed infants from Porto Velho (Amazon), Brazil. Int J Hyg Environ Health 210:51–60

    CAS  Article  Google Scholar 

  36. McDowell MA, Dillon CF, Osterloh J, Bolger PM, Pellizzari E, Fernando R, De Oca RM, Schober SE, Sinks T, Jones RL, Mahaffey KR (2004) Hair mercury levels in US children and women of childbearing age: reference range data from NHANES 1999–2000. Environ Health Perspect 112:1165–1171

    CAS  Article  Google Scholar 

  37. Mohan S, Tiller M, Van Der Voet G, Kanhai H (2005) Mercury exposure of mothers and newborns in Surinam: a pilot study. Clin Toxicol 43:101–104

    CAS  Article  Google Scholar 

  38. Moraes Rebelo SR, de Carvalho Freitas CE, Mota Soares MG (2010) Fish diet from Manacapuru big lake complex (amazon): an approach starting from the traditional knowledge. Biota Neotrop 10:39–44

    Article  Google Scholar 

  39. Myers GJ, Davidson PW, Cox C, Shamlaye CF, Palumbo D, Cernichiari E, Sloane-Reeves J, Wilding GE, Kost J, Huang LS, Clarkson TW (2003) Prenatal methylmercury exposure from ocean fish consumption in the Seychelles child development study. Lancet 361:1686–1692

    CAS  Article  Google Scholar 

  40. Nuttall KL (2006) Interpreting hair mercury levels in individual patients. Ann Clin Lab Sci 36:248–261

    CAS  Google Scholar 

  41. Ohba T, Kurokawa N, Nakai K, Shimada M, Suzuki K, Sugawara N, Kameo S, Satoh C, Satoh H (2008) Permanent waving does not change mercury concentration in the proximal segment of hair close to scalp. Tohoku J Exp Med 214:69–78

    CAS  Article  Google Scholar 

  42. Oken E, Wright RO, Kleinman KP, Bellinger D, Amarasiriwardena CJ, Hu H, Rich-Edwards JW, Gillman MW (2005) Maternal fish consumption, hair mercury, and infant cognition in a U.S. Cohort. Environ Health Perspect 113:1376–1380

    CAS  Article  Google Scholar 

  43. Parzen E (1962) On estimation of probability density function and mode. Ann Math Stat 33:1065–1076

    Article  Google Scholar 

  44. Passos CJ, Mergler D (2008) Human mercury exposure and adverse health effects in the Amazon: a review. Cad Saúde Pública 24(Suppl 4):S503–S520

    Google Scholar 

  45. Passos CJ, Lucotte M, Queiroz A, Mergler D, Peleja R, Goch Y, Morais S (2003) Condições sócio-econômicas e exposição ao mercúrio (Hg) através do consumo de peixe: um estudo de caso em Santarém, Pará, Brasil. Revista Saúde Ambiente 6:3–11

    Google Scholar 

  46. Pesch A, Wilhelm M, Rostek U, Schmitz N, Weishoff-Houben M, Ranft U, Idel H (2002) Mercury concentrations in urine, scalp hair, and saliva in children from Germany. J Expo Anal Environ Epidemiol 12:252–258

    CAS  Article  Google Scholar 

  47. Ranken RC, Kill RC, Baker CGJ (1997) Food industries manual, 24th edition, page 63. Blakie, Chapman and Hall, London

    Book  Google Scholar 

  48. Rodríguez Martín-Doimeadios RC, Berzas Nevado JJ, Guzmán Bernardo FJ, Jiménez Moreno M, Arrifano GP, Herculano AM, do Nascimento JL, Crespo-López ME (2014) Comparative study of mercury speciation in commercial fishes of the Brazilian amazon. Environ Sci Pollut Res Int 21:7466–7479

    Google Scholar 

  49. Rosenblatt M (1956) Remarks on some nonparametric estimates of a density function. Ann Math Stat 42:43–47

    CAS  Google Scholar 

  50. Salonen JT, Seppänen K, Nyyssönen K, Korpela H, Kauhanen J, Kantola M, Tuomilehto J, Esterbauer H, Tatzber F, Salonen R (1995) Intake of mercury from fish, lipid peroxidation, and the risk of myocardial infarction and coronary, cardiovascular, and any death in eastern Finnish men. Circulation 91:645–655

    CAS  Article  Google Scholar 

  51. Schoeman K, Bend JR, Hill J, Nash K, Koren G (2009) Defining a lowest observable adverse effect hair concentrations of mercury for neurodevelopmental effects of prenatal methylmercury exposure through maternal fish consumption: a systematic review. Ther Drug Monit 31:670–682

    CAS  Google Scholar 

  52. Schoeman K, Tanaka T, Bend JR, Koren G (2010) Hair mercury levels of women of reproductive age in Ontario, Canada: implications to fetal safety and fish consumption. J Pediatr 157:127–131

    CAS  Article  Google Scholar 

  53. Scott DW (1992) Multivariate Density Estimation: Theory, Practice and Visualization. John Wiley & Sons, p 161

  54. Scott DW, Terrell GR (1987) Biased and unbiased cross-validation in density estimation. J Am Stat Assoc 62:1131–1146

    Article  Google Scholar 

  55. Sheather SJ, Jones MC (1991) A reliable data-based bandwidth selection method for kernel density estimation. J Roy Stat Soc B 53:683–690

    Google Scholar 

  56. Silverman BW (1986) Density Estimation for Statistics and Data Analysis. Vol. 26 of Monographs on Statistics and Applied Probability, Chapman and Hall, London

  57. Sirot V, Guérin T, Mauras Y, Garraud H, Volatier JL, Leblanc JC (2008) Methylmercury exposure assessment using dietary and biomarker data among frequent seafood consumers in France CALIPSO study. Environ Res 107:30–38

    CAS  Article  Google Scholar 

  58. Stern AH (1993) Re-evaluation of the reference dose for methylmercury and assessment of current exposure levels. Risk Anal 13:355–364

    CAS  Article  Google Scholar 

  59. Stewart PW, Sargent DM, Reihman J, Gump BB, Lonky E, Darvill T, Hicks H, Pagano J (2006) Response inhibition during differential reinforcement of Low rates (DRL) schedules may be sensitive to low-level polychlorinated biphenyl, methylmercury, and lead exposure in children. Environ Health Perspect 114:1923–1929

    CAS  Google Scholar 

  60. US EPA (2001) Water quality criterion for the protection of human health: methylmercury. United States Environmental Protection Agency, Office of Science and Technology, Office of Water, Washington

  61. Virtanen JK, Voutilainen S, Rissanen TH, Mursu J, Tuomainen TP, Korhonen MJ, Valkonen VP, Seppänen K, Laukkanen JA, Salonen JT (2005) Mercury, fish oils, and risk of acute coronary events and cardiovascular disease, coronary heart disease, and all-cause mortality in men in eastern Finland. Arterioscler Thromb Vasc Biol 25:228–233

    CAS  Google Scholar 

  62. WHO (1990) International Programme on Chemical Safety: Methylmercury. Environmental Health Criteria 101. Geneva:World Health Organization

  63. Xue F, Holzman C, Rahbar MH, Trosko K, Fischer L (2007) Maternal fish consumption, mercury levels, and risk of preterm delivery. Environ Health Perspect 115:42–47

    CAS  Article  Google Scholar 

  64. Yaginuma-Sakurai K, Shimada M, Ohba T, Nakai K, Suzuki K, Kurokawa N, Kameo S, Satoh H (2009) Assessment of exposure to methylmercury in pregnant Japanese women by FFQ. Public Health Nutr 12:2352–2358

    Article  Google Scholar 

  65. Yasutake A, Matsumoto M, Yamaguchi M, Hachiya N (2003) Current hair mercury levels in Japanese: survey in five districts. Tohoku J Exp Med 199:161–169

    CAS  Article  Google Scholar 

Download references

Acknowledgments

We thank Carina Leal for her technical support in the distribution and collection of questionnaires from voluntaries. We thank Pierre Soucasse for his technical involvement in the quantification of Hg in hair. We thank Zuleica C. Castilhos for having performed quantification of Hg in fish (Laboratório de Especiação de Mercúrio Ambiental—Centro de Tecnologia Mineral—CETEM, Rio de Janeiro, Brazil).

Compliance with ethical standards

Sources of funding

This study was funded by the French National Institute for Universe Sciences (INSU), CNRS, through its program EC2CO, the Brazilian federal program CAPES/CSF-PVE’s (processo 88881.030.467/2013-01), the University of West of Para (UFOPA), and the FAPESPA (the Amazon Research Foundation that promotes science and technology in the state of Pará).

Conflict of interest

The authors declare that they have no conflict of interest.

Research involving human participants and animals

Fish used in the present study have been purchased on a local fish market, and fishermen had already killed them. A total of 93 human participants were recruited for the study. A questionnaire related to fish consumption and hair were collected from these voluntary participants.

Informed consent

All willing participants were fully informed about the purposes and limitations of the study, answered a questionnaire without name identification and provided a written consent in Portuguese. All willing participants accepted to give hair.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Jean-Paul Bourdineaud.

Additional information

Responsible editor: Philippe Garrigues

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 673 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Bourdineaud, JP., Durrieu, G., Sarrazin, S.L.F. et al. Mercurial exposure of residents of Santarém and Oriximiná cities (Pará, Brazil) through fish consumption. Environ Sci Pollut Res 22, 12150–12161 (2015). https://doi.org/10.1007/s11356-015-4502-y

Download citation

Keywords

  • Methylmercury
  • Fish consumption
  • Santarém
  • Oriximiná
  • Pregnancy
  • Hair