Skip to main content
Log in

Elements and polycyclic aromatic hydrocarbons in exhaust particles emitted by light-duty vehicles

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

The main purpose of this work was to evaluate the chemical composition of particulate matter (PM) emitted by eight different light-duty vehicles. Exhaust samples from petrol and diesel cars (Euro 3 to Euro 5) were collected in a chassis dynamometer facility. To simulate the real-world driving conditions, three ARTEMIS cycles were followed: road, to simulate a fluid traffic flow and urban with hot and cold starts, to simulate driving conditions in cities. Samples were analysed for the water-soluble ions, for the elemental composition and for polycyclic aromatic hydrocarbons (PAHs), respectively, by ion chromatography, inductively coupled plasma atomic emission spectroscopy (ICP-AES), inductively coupled plasma mass spectrometry (ICP-MS) and gas chromatography-mass spectrometry (GC-MS). Nitrate and phosphate were the major water-soluble ions in the exhaust particles emitted from diesel and petrol vehicles, respectively. The amount of material emitted is affected by the vehicle age. For vehicles ≥Euro 4, most elements were below the detection limits. Sodium, with emission factors in the ranges 23.5–62.4 and 78.2–227μg km−1, for petrol and diesel Euro 3 vehicles, respectively, was the major element. The emission factors of metallic elements indicated that diesel vehicles release three to five times more than petrol automobiles. Element emissions under urban cycles are higher than those found for on-road driving, being three or four times higher, for petrol vehicles, and two or three times, for diesel vehicles. The difference between cycles is mainly due to the high emissions for the urban cycle with hot start-up. As registered for elements, most of the PAH emissions for vehicles ≥Euro 4 were also below the detection limits. Regardless of the vehicle models or driving cycles, the two- to four-ring PAHs were always dominant. Naphthalene, with emission factors up to 925 μg km−1, was always the most abundant PAH. The relative cancer risk associated with naphthalene was estimated to be up to several orders of magnitude higher than any of the chemical species found in the PM phase. The highest PAH emission factors were registered for diesel-powered vehicles. The condition of the vehicle can exert a decisive influence on both element and PAH emissions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abrantes R, Assunção JV, Pesquero CR (2004) Emission of polycyclic aromatic hydrocarbons from light-duty diesel vehicles exhaust. Atmos Environ 38:1631–1640

    Article  Google Scholar 

  • Alves CA, Lopes DJ, Calvo AI, Evtyugina M, Rocha S, Nunes T (2015) Emissions from light-duty diesel and gasoline in-use vehicles measured on chassis dynamometer test cycles. Aerosol Air Qual Res 15:99–116

    CAS  Google Scholar 

  • Alves CA, Vicente A, Monteiro C, Gonçalves C, Evtyugina M, Pio C (2011) Emission of trace gases and organic components in smoke particles from a wildfire in a mixed-evergreen forest in Portugal. Sci Total Environ 409:1466–1475

  • André M (2004) The ARTEMIS European driving cycles for measuring car pollutant emissions. Sci Total Environ 334–335:73–84

    Article  Google Scholar 

  • André JM, Joumard R (2005) Modelling of cold start excess emissions for passenger cars. INRETS Report, No. TE 0509, Bron, France

  • André M, Joumard R, Vidon R, Tassel P, Perret P (2006) Real-world European driving cycles for measuring pollutant emissions from high- and low-powered cars. Atmos Environ 40:5944–5953

    Article  Google Scholar 

  • Bakeas EB, Karavalakis G (2013) Regulated, carbonyl and polycyclic aromatic hydrocarbon emissions from a light-duty vehicle fueled with diesel and biodiesel blends. Environ Sci Process Impacts 15:412–422

    Article  CAS  Google Scholar 

  • Biswas S, Verma V, Schauer JJ, Sioutas C (2009) Chemical speciation of PM emissions from heavy-duty diesel vehicles equipped with diesel particulate filter (DPF) and selective catalytic reduction (SCR) retrofits. Atmos Environ 43:1917–1925

    Article  CAS  Google Scholar 

  • Borrás E, Tortajada-Genaro LA, Vázquez M, Zielinska B (2009) Polycyclic aromatic hydrocarbon exhaust emissions from different reformulated diesel fuels and engine operating conditions. Atmos Environ 43:5944–5952

    Article  Google Scholar 

  • Byčenkienė S, Plauškaitė K, Dudoitis V, Ulevicius V (2014) Urban background levels of particle number concentration and sources in Vilnius, Lithuania. Atmos Res 143:279–292

    Article  Google Scholar 

  • Callén MS, López JM, Mastral AM (2013) Influence of organic and inorganic markers in the source apportionment of airborne PM10 in Zaragoza (Spain) by two receptor models. Environ Sci Pollut Res 20:3240–3251

    Article  Google Scholar 

  • Cardone M, Prati MV, Rocco V, Seggiani M, Senatore A, Vitolo S (2002) Brassica carinata as an alternative oil crop for the production of biodiesel in Italy: engine performance and regulated and unregulated exhaust emissions. Environ Sci Technol 36:4656–4662

    Article  CAS  Google Scholar 

  • Cheung K, Ntziachristos L, Tzamkiozis T, Schauer J, Samaras Z, Moore K, Sioutas C (2010) Emissions of particulate trace elements, metals and organic species from gasoline, diesel, and biodiesel passenger vehicles and their relation to oxidative potential. Aerosol Sci Technol 44:500–513

    Article  CAS  Google Scholar 

  • Chiang HL, Lai YM, Chang SY (2012) Pollutant constituents of exhaust emitted from light-duty diesel vehicles. Atmos Environ 47:399–406

    Article  CAS  Google Scholar 

  • Chien SM, Huang YJ, Chuang SC, Yang HH (2009) Effects of biodiesel blending on particulate and polycyclic aromatic hydrocarbon emissions in nano/ultrafine/fine/coarse ranges from diesel engine. Aerosol Air Qual Res 9:18–31

    CAS  Google Scholar 

  • Corrêa SM, Arbilla G (2006) Aromatic hydrocarbons emissions in diesel and biodiesel exhaust. Atmos Environ 40:6821–6826

    Article  Google Scholar 

  • Cunat PJ (2004) Alloying elements in stainless steel and other chromium-containing alloys. Euro Inox 2004:1–24

    Article  Google Scholar 

  • Delhomme O, Millet M (2012) Characterization of particulate polycyclic aromatic hydrocarbons in the east of France urban areas. Environ Sci Pollut Res 19:1791–1799

    Article  CAS  Google Scholar 

  • Donaldson K, Tran L, Jimenez LA, Duffin R, Newby DE, Mills N, MacNee W, Stone V (2005) Combustion-derived nanoparticles: a review of their toxicology following inhalation exposure. Part Fibre Toxicol 2:10. doi:10.1186/1743-8977-2-10

    Article  Google Scholar 

  • Đorđević D, Stortini AM, Relić D, Mihajlidi-Zelić A, Huremović J, Barbante C, Gambaro A (2014) Trace elements in size-segregated urban aerosol in relation to the anthropogenic emission sources and the resuspension. Environ Sci Pollut Res 21:10949–10959

    Article  Google Scholar 

  • Durbin TD, Collins JR, Norbeck JM, Smith MR (2000) Effects of biodiesel, biodiesel blends, and a synthetic diesel on emissions from light heavy-duty diesel vehicles. Environ Sci Technol 34:349–355

    Article  CAS  Google Scholar 

  • Dwivedi D, Agarwal AK, Sharma M (2006) Particulate emission characterization of a biodiesel vs dieselfuelled compression ignition transport engine: A comparative study. Atmos Environ 40:5586–5595

  • Fabretti J, Sauret N, Gal J, Maria PC, Schärer U (2009) Elemental characterization and source identification of PM2.5 using positive matrix factorization: the Malraux road tunnel, Nice, France. Atmos Res 94:320–329

    Article  CAS  Google Scholar 

  • Fitch J (2004) Copper and your diesel engine oils. Practicing oil analysis magazine. September 2004

  • Fornalczyk A, Saternus M (2013) The possibilities of reusing the ceramic carriers coming from used auto catalytic converters. Adv Ceram Sci Eng 2:56–63

    Google Scholar 

  • Fujita EM, Zielinska B, Campbell DE, Arnott WP, Sagebiel JC, Gabele PA, Crews W, Snow R, Clark NN, Wayne WC, Lawson DR (2007) Variations in speciated emissions from spark-ignition and compressionignition motor vehicles in California’s South Coast Air Basin. J Air Waste Manage 57:705–720

  • Gauderman WJ, Vora H, McConnell R, Berhane K, Gilliland F, Thomas D, Lurmann F, Avoli E, Kunzli N, Jerrett M, Peters J (2007) The effect of exposure to traffic on lung development from 10 to 18 years of age. Lancet 369:571–577

    Article  Google Scholar 

  • Geller M, Ntziachristos L, Mamakos A, Samaras Z, Schmitz D, Froines J, Sioutas C (2006) Physicochemical and redox characteristics of particulate matter (PM) emitted from gasoline and diesel passenger cars. Atmos Environ 40:6988–7004

    Article  CAS  Google Scholar 

  • Giakoumis EG, Rakopoulos CD, Dimaratos AM, Rakopoulos DC (2012) Exhaust emissions of diesel engines operating under transient conditions with biodiesel fuel blends. Prog Energy Combust Sci 38:691–715

    Article  CAS  Google Scholar 

  • Grigoratos T, Fontaras G, Kalogirou M, Samara C, Samaras Z, Rose K (2014a) Effect of rapeseed methylester blending on diesel passenger car emissions—part 2: unregulated emissions and oxidation activity. Fuel 128:260–267

    Article  CAS  Google Scholar 

  • Grigoratos T, Samara C, Voutsa D, Manoli E, Kouras A (2014b) Chemical composition and mass closure of ambient coarse particles at traffic and urban-background sites in Thessaloniki, Greece. Environ Sci Pollut Res 21:7708–7722

    Article  CAS  Google Scholar 

  • Harrod KS, Jaramillo RJ, Berger JA, Gigliotti AP, Seilkop SK, Reed MD (2005) Inhaled diesel engine emissions reduce bacterial clearance and exacerbate lung disease to Pseudomonas aeruginosa infection in vivo. Toxicol Sci 83:155–165

    Article  CAS  Google Scholar 

  • Herner JD, Hu S, Robertson WH, Huai T, Collins JF, Dwyer H, Ayala A (2009) Effect of advanced after treatment for PM and NOx control on heavy-duty diesel truck emissions. Environ Sci Technol 43:5928–5933

    Article  CAS  Google Scholar 

  • Herrington JS, Hays MD, George BJ, Baldauf RW (2012) The effects of operating conditions on semivolatile organic compounds emitted from light-duty, gasoline-powered motor vehicles. Atmos Environ 54:53–59

    Article  CAS  Google Scholar 

  • Hoek G, Brunekreef B, Goldbohm S, Fischer P, van den Brandt PA (2002) Association between mortality and indicators of traffic-related air pollution in the Netherlands: a cohort study. Lancet 360:1203–1209

    Article  Google Scholar 

  • How HG, Teoh YH, Masjuki HH, Kalam MA (2012) Impact of coconut oil blends on particulate-phase PAHs and regulated emissions from a light duty diesel engine. Energy 48:500–509

    Article  CAS  Google Scholar 

  • Hu S, Herner JD, Shafer M, Robertson W, Schauer JJ, Dwyer H, Collins J, Huai T, Ayala A (2009) Metals emitted from heavy-duty diesel vehicles equipped with advanced PM and NOx emission controls. Atmos Environ 43:2950–2959

    Article  CAS  Google Scholar 

  • Hu S, Herner JD, Robertson W, Kobayashi R, Chang MCO, Huang SM, Zielinska B, Kado N, Collins JF, Rieger P, Huai T, Ayala A (2013) Emissions of polycyclic aromatic hydrocarbons (PAHs) and nitro-PAHs from heavy-duty diesel vehicles with DPF and SCR. J Air Waste Manage Assoc 63:984–996

    Article  CAS  Google Scholar 

  • Kalam MA, Husnawan M, Masjuki HH (2003) Exhaust emission and combustion evaluation of coconut oil-powered indirect injection diesel engine. Renew Energy 28:2405–2415

    Article  CAS  Google Scholar 

  • Karavalakis G, Deves G, Fontaras G, Stournas S, Samaras Z, Bakeas E (2010) The impact of soy-based biodiesel on PAH, nitro-PAH and oxy-PAH emissions from a passenger car operated over regulated and nonregulated driving cycles. Fuel 89:3876–3883

    Article  CAS  Google Scholar 

  • Kruger PC, Schell LM, Stark AD, Parsons PJ (2010) Lanthanide distribution in human tissue by membrane desolvation-ICP-MS. J Anal At Spectrom 25:1298–1307

    Article  CAS  Google Scholar 

  • Lapuerta M, Armas O, Rodríguez-Fernández J (2008) Effect of biodiesel fuels on diesel engine emissions. Prog Energy Combust Sci 34:198–223

    Article  CAS  Google Scholar 

  • Lianou M, Chalbot MC, Kavouras IG, Kotronarou A, Karakatsani A, Analytis A, Katsouyanni K, Puustinen A, Hameri K, Vallius M, Pekkanen J, Meddings C, Harrison RM, Ayres JG, ten Brick H, Kos G, Meliefste K, de Hartog J, Hoek G (2011) Temporal variations of atmospheric aerosol in four European urban areas. Environ Sci Pollut Res 18:1202–1212

    Article  CAS  Google Scholar 

  • Liati A, Schreiber D, Eggenschwiler PD, Dasilva YAR (2013) Metal particle emissions in the exhaust stream of diesel engines: an electron microscope study. Environ Sci Technol 47:14495–14501

    Article  CAS  Google Scholar 

  • Lim MCH, Ayoko GA, Morawska L, Ristovski ZD, Jayaratne ER (2007) The effects of fuel characteristics and engine operating conditions on the elemental composition of emissions from heavy duty diesel buses. Fuel 86:1831–1839

    Article  CAS  Google Scholar 

  • Lim L, Lim C, Yu LE (2009) Composition and size distribution of metals in diesel exhaust particulates. J Environ Monit 11:1614–1621

    Article  CAS  Google Scholar 

  • Lin YC, Lee WJ, Hou HC (2006a) PAH emissions and energy efficiency of palm-biodiesel blends fueled on diesel generator. Atmos Environ 40:3930–3940

    Article  CAS  Google Scholar 

  • Lin YC, Lee WJ, Wu TS, Wang CT (2006b) Comparison of PAH and regulated harmful matter emissions from biodiesel blends and paraffinic fuel blends on engine accumulated mileage test. Fuel 85:2516–2523

    Article  CAS  Google Scholar 

  • Liu ZG, Berg DR, Swor TA, Schauer JJ (2008) Comparative analysis on the effects of diesel particulate filter and selective catalytic reduction systems on a wide spectrum of chemical species emissions. Environ Sci Technol 42:6080–6085

    Article  CAS  Google Scholar 

  • McDonald JD, Reed MD, Campen MJ, Barrett EG, Seagrave J, Mauderly JL (2007) Health effects of inhaled gasoline engine emissions. Inhal Toxicol 19:107–116

    Article  CAS  Google Scholar 

  • Miguel AH, Kirchstetter TW, Harley RA, Hering SV (1999) On-road emissions of particulate polycyclic aromatic hydrocarbons and black carbon soot from gasoline and diesel vehicles. Environ Sci Technol 32:450–455

    Article  Google Scholar 

  • Mirante F, Salvador P, Pio C, Alves C, Artinano B, Caseiro A, Revuelta MA (2014) Size fractionated aerosol composition at roadside and background environments in the Madrid urban atmosphere. Atmos Res 138:278–292

    Article  CAS  Google Scholar 

  • Nam E, Fulper C, Warila J, Somers J, Michaels H, Baldauf R, Rykowski R, Scarbro C (2008) Analysis of particulate matter emissions from light-duty gasoline vehicles in Kansas City. Report EPA420-R-08-010, U.S. Environmental Protection Agency

  • NCEA - National Center for Environmental Assessment (2002) Health assessment document for diesel engine exhaust, prepared by the, Washington, DC, for the Office of Transportation and Air Quality, EPA/600/8-90/057F; U.S. Environmental Protection Agency, National Technical Information Service: Springfield, VA; PB2002-107661

  • NJDEP (2009) Unit risk factors for inhalation. New Jersey Department of Environmental Protection. NJDEP/DAQ/AQEv URFs2009.doc. April 2009

  • Oanh N, Thiansathit W, Bond T, Subramanian R, Winijkul E, Paw-armart I (2010) Compositional characterization of PM2.5 emitted from in-use diesel vehicles. Atmos Environ 44:15–22

    Article  Google Scholar 

  • Peters A, Veronesi B, Caldeón-Garcidueñas L, Gehr P, Chen LC, Geiser M, Reed W, Rothen-Rutishauser B, Schürch S, Schulz H (2006) Translocation and potential neurological effects of fine and ultrafine particles a critical update. Part Fibre Toxicol 3:13

    Article  Google Scholar 

  • Plotkin SE (2007) Examining fuel economy and carbon standards for light vehicles. Discussion Paper No. 2007-1. International Transport Forum

  • Pope CA, Dockery DW (2006) Health effects of fine particulate air pollution: lines that connect. J Air Waste Manage Assoc 56:709–742

    Article  CAS  Google Scholar 

  • Querol X, Alastuey A, Rodriguez S, Plana F, Ruiz CR, Cots N, Massagué G, Puig O (2001) PM10 and PM2.5 source apportionment in the Barcelona metropolitan area, Catalonia, Spain. Atmos Environ 35:6407–6419

    Article  CAS  Google Scholar 

  • Ratcliff MA, Dane AJ, Williams A, Ireland J, Luecke J, McCormick RL, Voorhees KJ (2010) Diesel particle filter and fuel effects on heavy-duty diesel engine emissions. Environ Sci Technol 44:8343–8349

    Article  CAS  Google Scholar 

  • Riddle SG, Jakober CA, Robert MA, Cahill TM, Kleeman MJ, Charles MJ (2007a) Large PAHs detected in fine particulate matter emitted from light-duty gasoline vehicles. Atmos Environ 41:8658–8668

    Article  CAS  Google Scholar 

  • Riddle SG, Robert MA, Jakober CA, Hannigan MP, Kleeman MJ (2007b) Size distribution of trace organic species emitted from light-duty gasoline vehicles. Environ Sci Technol 41:7464–7471

    Article  CAS  Google Scholar 

  • Rogge WF, Hildermann LM, Mazurek MA, Cass GR (1993) Sources of fine organic aerosol: noncatalyst and catalyst-equipped automobiles and heavy-duty diesel trucks. Environ Sci Technol 27:636–651

    Article  CAS  Google Scholar 

  • Samara C, Voutsa D, Kouras A, Eleftheriadis K, Maggos T, Saraga D, Petrakakis M (2014) Organic and elemental carbon associated to PM10 and PM2.5 at urban sites of northern Greece. Environ Sci Pollut Res 21:1769–1785

    Article  CAS  Google Scholar 

  • Schauer JJ, Kleeman MJ, Cass GR, Simoneit BRT (2002) Measurement of emissions from air pollution sources. 5. C1-C32 organic compounds from gasoline-powered motor vehicles. Environ Sci Technol 36:1169–1180

    Article  CAS  Google Scholar 

  • Schauer JJ, Christensen CG, Kittelson DB, Johnson JP, Watts WF (2008) Impact of ambient temperatures and driving conditions on the chemical composition of particulate matter emissions from non-smoking gasoline-powered motor vehicles. Aerosol Sci Technol 42:210–223

    Article  CAS  Google Scholar 

  • Seagrave J, McDonald JD, Bedrick E, Edgerton ES, Gigliotti AP, Jansen JJ, Ke L, Naeher LP, Seilkop SK, Zheng M, Mauderly JL (2006) Lung toxicity of ambient particulate matter from Southeastern U.S. sites with different contributing sources: relationships between composition and effects. Environ Health Perspect 114:1387–1393

    Article  CAS  Google Scholar 

  • Selezneva IE, Levin AY, Monin SV (1999) Detergent-dispersant additives for motor oils. Alkylphenolates. Chem Technol Fuels Oil 35:389–395

    Article  CAS  Google Scholar 

  • Shah SD, Ogunyoku TA, Miller JW, Cocker DR III (2005) On-road emission rates of PAH and n-alkane compounds from heavy-duty vehicles. Environ Sci Technol 39:5276–5284

    Article  CAS  Google Scholar 

  • Shields L, Suess D, Prather K (2007) Determination of single particle mass spectral signatures from heavy-duty diesel vehicle emissions for PM2.5 source apportionment. Atmos Environ 41:3841–3852

    Article  CAS  Google Scholar 

  • Slezakova K, Castro D, Matos CD, Alvim-Ferraz MC, Morais S, Pereira MC (2013) Impact of vehicular traffic emissions on particulate-bound PAHs: levels and associated health risks. Atmos Res 127:141–147

    Article  CAS  Google Scholar 

  • Sodeman DA, Toner SM, Prather KA (2005) Determination of single particle mass spectral signatures from light-duty vehicle emissions. Environ Sci Technol 39:4569–4580

    Article  CAS  Google Scholar 

  • Spencer MT, Shields LG, Sodeman DA, Toner SM, Prather KA (2006) Comparison of oil and fuel particle chemical signatures with particle emissions from heavy and light duty vehicles. Atmos Environ 40:5224–5235

  • Tan J, Duan J, Chai F, He K, Hao J (2014) Source apportionment of size segregated fine/ultrafine particle by PMF in Beijing. Atmos Res 139:90–100

    Article  CAS  Google Scholar 

  • Tang S, Frank BP, Lanni T, Rideout G, Meyer N, Beregszaszy C (2007) Unregulated emissions from a heavy-duty diesel engine with various fuels and emission control systems. Environ Sci Technol 41:5037–5043

    Article  CAS  Google Scholar 

  • Tsai FC, Apte MG, Daisey JM (2000) An exploratory analysis of the relationship between mortality and the chemical composition of airborne particulate matter. Inhal Toxicol 12:121–135

    Article  CAS  Google Scholar 

  • Turrio-Baldassarri L, Battistelli CL, Conti L, Crebelli R, Berardis B, Iamiceli AL, Gambino M, Iannaccone S (2004) Emission comparison of urban bus engine fueled with diesel oil and ‘biodiesel’ blend. Sci Total Environ 327:147–162

    Article  CAS  Google Scholar 

  • van Setten BAAL, Makkee M, Moulijn JA (2001) Science and technology of catalytic diesel particulate filters. Catal Rev 43:489–564

    Article  Google Scholar 

  • Vogt R, Kirchner U, Scheer V, Hinz KP, Trimborn A, Spengler B (2003) Identification of diesel exhaust particles at an Autobahn, urban and rural location using single-particle mass spectrometry. J Aerosol Sci 34:319–337

    Article  CAS  Google Scholar 

  • Vojtisek-Lom M, Czerwinski J, Leníček J, Sekyra M, Topinka J (2012) Polycyclic aromatic hydrocarbons (PAHs) in exhaust emissions from diesel engines powered by rapeseed oil methylester and heated non-esterified rapeseed oil. Atmos Environ 60:253–261

    Article  CAS  Google Scholar 

  • Vouitsis E, Ntziachristos L, Samaras Z, Grigoratos T, Samara C, Miltsios G (2007) Effect of a DPF and low sulfur lube oil on PM pysicochemical characteristics from a Euro 4 light duty diesel vehicle. SAE Technical Paper 01-0314

  • Vouitsis E, Ntziachristos L, Pistikopoulos P, Samaras Z, Chrysikou L, Samara C, Papadimitriou C, Samaras P, Sakellaropoulos G (2008) An investigation on the physical, chemical and ecotoxicological characteristics of particulate matter emitted from light-duty vehicles. Environ Pollut 157(9):2320–2327

    Google Scholar 

  • Wang YF, Huang KL, Li CT, Mi HH, Luo JH, Tsai PJ (2003) Emissions of fuel metals content from a diesel vehicle engine. Atmos Environ 37:4637–4643

    Article  CAS  Google Scholar 

  • WBG-The World Bank Group (1999) Removal of lead from gasoline: technical considerations. In: Pollution prevention and abatement handbook 1998. Toward cleaner production. Washington, USA, pp 240–244

  • Yang HH, Chien SM, Lo MY, Lan JCW, Lu WC, Ku YY (2007) Effects of biodiesel on emissions of regulated air pollutants and polycyclic aromatic hydrocarbons under engine durability testing. Atmos Environ 41:7232–7240

    Article  CAS  Google Scholar 

  • Zielinska B, Sagebiel J, McDonald JD, Whitney K, Lawson DR (2004) Emission rates and comparative chemical composition from selected in-use diesel and gasoline-fueled vehicles. J Air Waste Manage Assoc 54:1138–1150

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was funded by the Portuguese Science Foundation through the project “Source apportionment of URBan Emissions of primary particulate matter”, PTDC/AAC-AMB/117956/2010 (URBE). The ICP-MS and ICP-AES analyses were supported by the AIRUSE project—Testing and Development of air quality mitigation measures in Southern Europe, LIFE 11 ENV/ES/000584.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Célia A. Alves.

Additional information

Responsible editor: Constantini Samara

Electronic supplementary material

Below is the link to the electronic supplementary material.

Table A1

(DOCX 29 kb)

Table A2

(DOCX 31 kb)

Table A3

(DOCX 35 kb)

Table A4

(DOCX 36 kb)

Table A5

(DOCX 34 kb)

Table A6

(DOCX 62 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alves, C.A., Barbosa, C., Rocha, S. et al. Elements and polycyclic aromatic hydrocarbons in exhaust particles emitted by light-duty vehicles. Environ Sci Pollut Res 22, 11526–11542 (2015). https://doi.org/10.1007/s11356-015-4394-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-015-4394-x

Keywords

Navigation