Skip to main content

Advertisement

Log in

A comparison of the sublethal and lethal toxicity of four pesticides in Hyalella azteca and Chironomus dilutus

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Laboratory toxicity testing is the primary tool used for surface water environmental risk assessment; however, there are critical information gaps regarding the sublethal effects of pesticides. In 10-day exposures, we assessed the lethal and sublethal (motility and growth) toxicities of four commonly used pesticides, bifenthrin, permethrin, cyfluthrin, and chlorpyrifos, on two freshwater invertebrates, Chironomus dilutus and Hyalella azteca. Pyrethroids were more toxic than the organophosphate chlorpyrifos in both species. Bifenthrin was most toxic to H. azteca survival and growth. Cyfluthrin was most toxic to C. dilutus. However, cyfluthrin had the greatest effect on motility on both H. azteca and C. dilutus. The evaluated concentrations of chlorpyrifos did not affect C. dilutus motility or growth, but significantly impacted H. azteca growth. Motility served as the most sensitive endpoint in assessing sublethal effects at low concentrations for both species, while growth was a good indicator of toxicity for all four pesticides for H. azteca. The integration of sublethal endpoints in ambient water monitoring and pesticide regulation efforts could improve identification of low-level pesticide concentrations that may eventually cause negative effects on food webs and community structure in aquatic environments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Agra AR, Soares AM (2009) Effects of two insecticides on survival, growth and emergence of Chironomus riparius Meigen. Bull Environ Contam Toxicol 82:501–504. doi:10.1007/s00128-009-9658-z

    Article  CAS  Google Scholar 

  • Amweg EL, Weston DP, Ureda NM (2005) Use and toxicity of pyrethroid pesticides in the central valley, California, USA. Environ Toxicol Chem 24:966–972. doi:10.1897/04-146R1.1

    Article  CAS  Google Scholar 

  • Anderson B et al (2014) Impacts of pesticides in a central California estuary. Environ Monit Assess 186:1801–1814. doi:10.1007/s10661-013-3494-7

    Article  CAS  Google Scholar 

  • Anderson BS, Phillips BM, Hunt JW, Worcester K, Adams M, Kapellas N, Tjeerdema RS (2006) Evidence of pesticide impacts in the Santa Maria river watershed, California, USA. Environ Toxicol Chem 25:1160–1170. doi:10.1897/05-231r.1

    Article  CAS  Google Scholar 

  • Ankley GT, Benoit DA, Balogh JC, Reynoldson TB, Day KE, Hoke RA (1994a) Evaluation of potential confounding factors in sediment toxicity tests with three freshwater benthic invertebrates. Environ Toxicol Chem 13:627–635. doi:10.1897/1552-8618(1994)13[627:eopcfi]2.0.co;2

    Article  CAS  Google Scholar 

  • Ankley GT, Call DJ, Cox JS, Kahl MD, Hoke RA, Kosian PA (1994b) Organic carbon partitioning as a basis for predicting the toxicity of chlorpyrifos in sediments. Environ Toxicol Chem 13:621–626. doi:10.1002/etc.5620130411

    Article  CAS  Google Scholar 

  • Ankley GT, Collyard SA (1995) Influence of piperonyl butoxide on the toxicity of organophosphate insecticides to three species of freshwater benthic invertebrates. Comp Biochem Physiol C: Pharmacol Toxicol Endocrinol 110:149–155. doi:10.1016/0742-8413(94)00098-u

    Google Scholar 

  • Baird DJ, Barber I, Bradley M, Soares AMVM, Calow P (1991) A comparative study of genotype sensitivity to acute toxic stress using clones of daphnia-magna straus. Ecotoxicol Environ Saf 21:257–265. doi:10.1016/0147-6513(91)90064-v

    Article  CAS  Google Scholar 

  • Baird DJ, Van den Brink PJ (2007) Using biological traits to predict species sensitivity to toxic substances. Ecotoxicol Environ Saf 67:296–301. doi:10.1016/j.ecoenv.2006.07.001

    Article  CAS  Google Scholar 

  • Beggel S, Werner I, Connon RE, Geist JP (2010) Sublethal toxicity of commercial insecticide formulations and their active ingredients to larval fathead minnow (Pimephales promelas). Sci Total Environ 408:3169–3175. doi:10.1016/j.scitotenv.2010.04.004

    Article  CAS  Google Scholar 

  • Bereswill R, Streloke M, Schulz R (2013) Current-use pesticides in stream water and suspended particles following runoff: exposure, effects, and mitigation requirements. Environ Toxicol Chem 32:1254–1263. doi:10.1002/etc.2170

    Article  CAS  Google Scholar 

  • Brander SM, Werner I, White JW, Deanovic L (2009) Toxicity of a dissolved pyrethroid mixture to Hyalella azteca at environmentally relevant concentrations. Environ Toxicol Chem 28:1493–1499

    Article  CAS  Google Scholar 

  • Bridges CM, Semlitsch RD (2000) Variation in pesticide tolerance of tadpoles among and within species of ranidae and patterns of amphibian decline. Conserv Biol 14:1490–1499. doi:10.1046/j.1523-1739.2000.99343.x

    Article  Google Scholar 

  • Brooks ML et al (2012) Life histories, salinity zones, and sublethal contributions of contaminants to pelagic fish declines illustrated with a case study of San Francisco Estuary, California, USA. Estuar Coasts 35:603–621. doi:10.1007/s12237-011-9459-6

    Article  Google Scholar 

  • Budd R, O’Geen A, Goh KS, Bondarenko S, Gan J (2009) Efficacy of constructed wetlands in pesticide removal from tailwaters in the central valley, California. Environ Sci Technol 43:2925–2930. doi:10.1021/es802958q

    Article  CAS  Google Scholar 

  • Campero M, Slos S, Ollevier F, Stoks R (2007) Sublethal pesticide concentrations and predation jointly shape life history: behavioral and physiological mechanisms. Ecol Appl 17:2111–2122. doi:10.1890/07-0442.1

    Article  Google Scholar 

  • Chambers JE, Carr RL (1995) Biochemical mechanisms contributing to species differences in insecticidal toxicity. Toxicology 105:291–304. doi:10.1016/0300-483x(95)03225-5

    Article  CAS  Google Scholar 

  • Chen J, Wang Z, Li G, Guo R (2014) The swimming speed alteration of two freshwater rotifers Brachionus calyciflorus and Asplanchna brightwelli under dimethoate stress. Chemosphere 95:256–260. doi:10.1016/j.chemosphere.2013.08.086

    Article  CAS  Google Scholar 

  • Christensen BT, Lauridsen TL, Ravn HW, Bayley M (2005) A comparison of feeding efficiency and swimming ability of Daphnia magna exposed to cypermethrin. Aquat Toxicol 73:210–220. doi:10.1016/j.aquatox.2005.03.011

    Article  CAS  Google Scholar 

  • Clark AG (1989) The comparative enzymology of the glutathione S-transferases from non-vertebrate organisms. Comp Biochem Physiol B 92:419–446. doi:10.1016/0305-0491(89)90114-4

    CAS  Google Scholar 

  • Clark JM, Matsumura F (1982) Two different types of inhibitory effects of pyrethroids on nerve Ca− and Ca+Mg-atpase activity in the squid, Loligo pealei. Pestic Biochem Physiol 18:180–190. doi:10.1016/0048-3575(82)90104-3

    Article  CAS  Google Scholar 

  • Connon RE et al (2012a) Transcription profiling in environmental diagnostics: health assessments in Columbia River Basin steelhead (Oncorhynchus mykiss). Environ Sci Technol 46:6081–6087. doi:10.1021/es3005128

    Article  CAS  Google Scholar 

  • Connon RE et al (2009) Linking mechanistic and behavioral responses to sublethal esfenvalerate exposure in the endangered delta smelt; Hypomesus transpacificus (fam. Osmeridae). BMC Genomics 10:608. doi:10.1186/1471-2164-10-608

    Article  Google Scholar 

  • Connon RE, Geist J, Werner I (2012b) Effect-based tools for monitoring and predicting the ecotoxicological effects of chemicals in the aquatic environment. Sensors 12:12741–12771

    Article  CAS  Google Scholar 

  • Deanovic LA, Markiewicz D, Stillway M, Fong S, Werner I (2013) Comparing the effectiveness of chronic water column tests with the crustaceans Hyalella azteca (order: Amphipoda) and Ceriodaphnia dubia (order: Cladocera) in detecting toxicity of current-use insecticides. Environ Toxicol Chem 32:707–712. doi:10.1002/etc.2111

    Article  CAS  Google Scholar 

  • Ding Y, Landrum PF, You J, Harwood AD, Lydy MJ (2012) Use of solid phase microextraction to estimate toxicity: relating fiber concentrations to toxicity—part I. Environ Toxicol Chem 31:2159–2167. doi:10.1002/etc.1935

    Article  CAS  Google Scholar 

  • Ding Y, Weston DP, You J, Rothert AK, Lydy MJ (2011) Toxicity of sediment-associated pesticides to Chironomus dilutus and Hyalella azteca. Arch Environ Contam Toxicol 61:83–92. doi:10.1007/s00244-010-9614-2

    Article  CAS  Google Scholar 

  • Dudgeon D et al (2006) Freshwater biodiversity: importance, threats, status and conservation challenges. Biol Rev 81:163–182. doi:10.1017/S1464793105006950

    Article  Google Scholar 

  • Eide I, Johansson E (1994) Statistical experimental design and projections to latent structures analysis in the evaluation of fuel blends with respect to particulate emissions. Chemom Intell Lab Syst 22:77–85. doi:10.1016/0169-7439(93)e0042-3

    Article  CAS  Google Scholar 

  • Escher BI, Hermens JLM (2002) Modes of action in ecotoxicology: their role in body burdens, species sensitivity, qsars, and mixture effects. Environ Sci Technol 36:4201–4217. doi:10.1021/es015848h

    Article  CAS  Google Scholar 

  • Floyd EY, Geist JP, Werner I (2008) Acute, sublethal exposure to a pyrethroid insecticide alters behavior, growth, and predation risk in larvae of the fathead minnow (Pimephales promelas). Environ Toxicol Chem 27:1780–1787. doi:10.1897/07-448.1

    Article  CAS  Google Scholar 

  • Geist J (2011) Integrative freshwater ecology and biodiversity conservation. Ecol Indic 11:1507–1516. doi:10.1016/j.ecolind.2011.04.002

    Article  Google Scholar 

  • Geist J, Werner I, Eder KJ, Leutenegger CM (2007) Comparisons of tissue-specific transcription of stress response genes with whole animal endpoints of adverse effect in striped bass (Morone saxatilis) following treatment with copper and esfenvalerate. Aquat Toxicol 85:28–39. doi:10.1016/j.aquatox.2007.07.011

    Article  CAS  Google Scholar 

  • Godin SJ, Scollon EJ, Hughes MF, Potter PM, DeVito MJ, Ross MK (2006) Species differences in the in vitro metabolism of deltamethrin and esfenvalerate: differential oxidative and hydrolytic metabolism by humans and rats. Drug Metab Dispos 34:1764–1771. doi:10.1124/dmd.106.010058

    Article  CAS  Google Scholar 

  • Haya K (1989) Toxicity of pyrethroid insecticides to fish. Environ Toxicol Chem 8:381–391. doi:10.1002/etc.5620080504

    Article  CAS  Google Scholar 

  • Heath AG, Cech JJ, Zinkl JG, Steele MD (1993) Sublethal effects of three pesticides on Japanese medaka. Arch Environ Contam Toxicol 25:485–491. doi:10.1007/bf00214337

    CAS  Google Scholar 

  • Hintzen EP, Lydy MJ, Belden JB (2009) Occurrence and potential toxicity of pyrethroids and other insecticides in bed sediments of urban streams in Central Texas. Environ Pollut 157:110–116. doi:10.1016/j.envpol.2008.07.023

    Article  CAS  Google Scholar 

  • Hladik ML, Kuivila KM (2012) Pyrethroid insecticides in bed sediments from urban and agricultural streams across the United States. J Environ Monit 14:1838–1845

    Article  CAS  Google Scholar 

  • Hoffman ER, Fisher SW (1994) Comparison of a field and laboratory-derived population of chironomus riparius (diptera: Chironomidae): biochemical and fitness evidence for population divergence. J Econ Entomol 87:318–325

    Article  CAS  Google Scholar 

  • Holomuzki JR, Feminella JW, Power ME (2010) Biotic interactions in freshwater benthic habitats. J N Am Benthol Soc 29:220–244. doi:10.1899/08-044.1

    Article  Google Scholar 

  • Hsieh BH, Deng JF, Ger J, Tsai WJ (2001) Acetylcholinesterase inhibition and the extrapyramidal syndrome: a review of the neurotoxicity of organophosphate. Neurotoxicology (Little Rock) 22:423–427. doi:10.1016/s0161-813x(01)00044-4

    Article  CAS  Google Scholar 

  • Hua J, Cothran R, Stoler A, Relyea R (2013) Cross-tolerance in amphibians: wood frog mortality when exposed to three insecticides with a common mode of action. Environ Toxicol Chem 32:932–936. doi:10.1002/etc.2121

    Article  CAS  Google Scholar 

  • Jensen A, Forbes VE (2001) Interclonal variation in the acute and delayed toxicity of cadmium to the european prosobranch gastropod Potamopyrgus antipodarum (gray). Arch Environ Contam Toxicol 40:230–235

    Article  CAS  Google Scholar 

  • Johnson KR, Jepson PC, Jenkins JJ (2008) Esfenvalerate-induced case-abandonment in the larvae of the caddisfly (Brachycentrus americanus). Environ Toxicol Chem 27:397–403. doi:10.1897/07-185r1.1

    Article  CAS  Google Scholar 

  • Karnak RE, Collins WJ (1974) The susceptibility to selected insecticides and acetylcholinesterase activity in a laboratory colony of midge larvae, Chironomus tentans (diptera: Chironomidae). Bull Environ Contam Toxicol 12:62–69. doi:10.1007/bf01713027

    Article  CAS  Google Scholar 

  • Kravvariti K, Tsiropoulos NG, Karpouzas DG (2010) Degradation and adsorption of terbuthylazine and chlorpyrifos in biobed biomixtures from composted cotton crop residues. Pest Manag Sci 66:1122–1128. doi:10.1002/ps.1990

    Article  CAS  Google Scholar 

  • Laskowski DA (2002) Physical and chemical properties of pyrethroids. Rev Environ Contam Toxicol 174:49–170

    CAS  Google Scholar 

  • Lee S, Gan J, Kim J-S, Kabashima JN, Crowley DE (2004) Microbial transformation of pyrethroid insecticides in aqueous and sediment phases. Environ Toxicol Chem 23:1–6. doi:10.1897/03-114

    Article  CAS  Google Scholar 

  • Li H, Sun B, Lydy MJ, You J (2013) Sediment-associated pesticides in an urban stream in Guangzhou, China: implication of a shift in pesticide use patterns. Environ Toxicol Chem 32:1040–1047. doi:10.1002/etc.2147

    Article  CAS  Google Scholar 

  • Liber K, Call DJ, Dawson TD, Whiteman FW, Dillon TM (1996) Effects of chironomus tentans larval growth retardation on adult emergence and ovipositing success: implications for interpreting freshwater sediment bioassays. Hydrobiologia 323:155–167. doi:10.1007/bf00007844

    Article  Google Scholar 

  • Lydy MJ, Austin KR (2004) Toxicity assessment of pesticide mixtures typical of the Sacramento–San Joaquin delta using Chironomus tentans. Arch Environ Contam Toxicol 48:49–55. doi:10.1007/s00244-004-0056-6

    Article  Google Scholar 

  • Major K, Soucek DJ, Giordano R, Wetzel MJ, Soto-Adames F (2013) The common ecotoxicology laboratory strain of Hyalella azteca is genetically distinct from most wild strains sampled in eastern North America. Environ Toxicol Chem 32:2637–2647. doi:10.1002/etc.2355

    CAS  Google Scholar 

  • Malison RL, Benjamin JR, Baxter CV (2010) Measuring adult insect emergence from streams: the influence of trap placement and a comparison with benthic sampling. J N Am Benthol Soc 29:647–656. doi:10.1899/09-086.1

    Article  Google Scholar 

  • Maul JD, Brennan AA, Harwood AD, Lydy MJ (2008) Effect of sediment-associated pyrethroids, fipronil, and metabolites on Chironomus tentans growth rate, body mass, condition index, immobilization, and survival. Environ Toxicol Chem 27:2582–2590. doi:10.1897/08-185.1

    Article  CAS  Google Scholar 

  • Maund SJ, Hamer MJ, Warinton JS, Kedwards TJ (1998) Aquatic ecotoxicology of the pyrethroid insecticide lambda-cyhalothrin: considerations for higher-tier aquatic risk assessment. Pestic Sci 54:408–417. doi:10.1002/(sici)1096-9063(199812)54:4<408::aid-ps843>3.0.co;2-t

    Article  CAS  Google Scholar 

  • Maund SJ, Travis KZ, Hendley P, Giddings JM, Solomon KR (2001) Probabilistic risk assessment of cotton pyrethroids: V. Combining landscape-level exposures and ecotoxicological effects data to characterize risks. Environ Toxicol Chem 20:687–692. doi:10.1002/etc.5620200330

    Article  CAS  Google Scholar 

  • McCarty LS, Mackay D (1993) Enhancing ecotoxicological modeling and assessment. Environ Sci Technol 27:1719–1728

    Article  Google Scholar 

  • McKenney JCL, Weber DE, Celestial DM, MacGregor MA (1998) Altered growth and metabolism of an estuarine shrimp (Palaemonetes pugio) during and after metamorphosis onto fenvalerate-laden sediment. Arch Environ Contam Toxicol 35:464–471. doi:10.1007/s002449900403

    Article  CAS  Google Scholar 

  • Nahon S, Charles F, Lantoine F, Vétion G, Escoubeyrou K, Desmalades M, Pruski AM (2010) Ultraviolet radiation negatively affects growth and food quality of the pelagic diatom Skeletonema costatum. J Exp Mar Bio Ecol 383:164–170. doi:10.1016/j.jembe.2009.12.006

    Article  Google Scholar 

  • Nasuti C, Cantalamesa F, Falcioni G, Gabbianelli R (2003) Different effects of type I and type II pyrethroids on erythrocyte plasma membrane properties and enzymatic activity in rats. Toxicology 191:233–244. doi:10.1016/s0300-483x(03)00207-5

    Article  CAS  Google Scholar 

  • Naylor C, Pindar L, Calow P (1990) Inter-specific and intraspecific variation in sensitivity to toxins the effects of acidity and zinc on the freshwater crustaceans Asellus-aquaticus l and Gammarus-pulex l. Water Res 24:757–764. doi:10.1016/0043-1354(90)90032-2

    Article  CAS  Google Scholar 

  • Nowak C, Czeikowitz A, Vogt C, Oetken M, Streit B, Schwenk K (2008) Variation in sensitivity to cadmium among genetically characterized laboratory strains of the midge Chironomus riparius. Chemosphere 71:1950–1956. doi:10.1016/j.chemosphere.2007.12.023

    Article  CAS  Google Scholar 

  • Nyman A-M, Schirmer K, Ashauer R (2014) Importance of toxicokinetics for interspecies variation in sensitivity to chemicals. Environ Sci Technol 48:5946–5954. doi:10.1021/es5005126

    Article  CAS  Google Scholar 

  • Parry E, Young TM (2013) Distribution of pyrethroid insecticides in secondary wastewater effluent. Environ Toxicol Chem 32:2686–2694. doi:10.1002/etc.2347

    Article  CAS  Google Scholar 

  • Phillips BM, Anderson BS, Hunt JW, Siegler K, Voorhees JP, Tjeerdema RS, McNeill K (2012) Pyrethroid and organophosphate pesticide-associated toxicity in two coastal watersheds (California, USA) Environ Toxicol Chem:n/a-n/a. doi :10.1002/etc.1860

  • Phipps GL, Mattson VR, Ankley GT (1995) Relative sensitivity of three freshwater benthic macroinvertebrates to ten contaminants. Arch Environ Contam Toxicol 28:281–286. doi:10.1007/bf00213103

    CAS  Google Scholar 

  • Proulx I, Hare L (2014) Differences in feeding behaviour among Chironomus species revealed by measurements of sulphur stable isotopes and cadmium in larvae. Freshw Biol 59:73–86. doi:10.1111/fwb.12247

    Article  CAS  Google Scholar 

  • R Core Team (2014) R: A language and environment for statistical computing. R Foundation for statistical computing, Vienna, Austria, URL http://www.R-project.org/

  • Rakotondravelo M, Anderson TD, Charlton R, Zhu K (2006a) Sublethal effects of three pesticides on activities of selected target and detoxification enzymes in the aquatic midge, Chironomus tentans (diptera: Chironomidae). Arch Environ Contam Toxicol 51:360–366. doi:10.1007/s00244-005-0227-0

    Article  CAS  Google Scholar 

  • Rakotondravelo ML, Anderson TD, Charlton RE, Zhu KY (2006b) Sublethal effects of three pesticides on larval survivorship, growth, and macromolecule production in the aquatic midge, Chironomus tentans (diptera: Chironomidae). Arch Environ Contam Toxicol 51:352–359. doi:10.1007/s00244-005-0219-0

    Article  CAS  Google Scholar 

  • Rebechi D, Richardi VS, Vicentini M, Guiloski IC, Assis HCS, Navarro-Silva MA (2014) Low malathion concentrations influence metabolism in Chironomus sancticaroli (diptera, Chironomidae) in acute and chronic toxicity tests. Rev Bras Entomol 58:296–301

    Article  Google Scholar 

  • Ristola T, Pellinen J, Ruokolainen M, Kostamo A, Kukkonen JVK (1999) Effect of sediment type, feeding level, and larval density on growth and development of a midge (Chironomus riparius). Environ Toxicol Chem 18:756–764. doi:10.1002/etc.5620180423

    Article  CAS  Google Scholar 

  • Ritz C, Streibig J (2005) Bioassay analysis using r. J Stat Softw 12:1–22

    Google Scholar 

  • Rubach MN, Baird DJ, Boerwinkel M-C, Maund SJ, Roessink I, Van den Brink PJ (2012) Species traits as predictors for intrinsic sensitivity of aquatic invertebrates to the insecticide chlorpyrifos. Ecotoxicology 21:2088–2101. doi:10.1007/s10646-012-0962-8

    Article  CAS  Google Scholar 

  • Rubach MN, Crum SJH, Van den Brink PJ (2011) Variability in the dynamics of mortality and immobility responses of freshwater arthropods exposed to chlorpyrifos. Arch Environ Contam Toxicol 60:708–721. doi:10.1007/s00244-010-9582-6

    Article  CAS  Google Scholar 

  • Scholz NL et al (2012) A perspective on modern pesticides, pelagic fish declines, and unknown ecological resilience in highly managed ecosystems. Bioscience 62:428–434. doi:10.1525/bio.2012.62.4.13

    Article  Google Scholar 

  • Sibley PK, Benoit DA, Ankley GT (1997) The significance of growth in chironomus tentans sediment toxicity tests: relationship to reproduction and demographic endpoints. Environ Toxicol Chem 16:336–345. doi:10.1002/etc.5620160232

    Article  CAS  Google Scholar 

  • Smith S Jr, Lizotte RE Jr (2007) Influence of selected water quality characteristics on the toxicity of lambda-cyhalothrin and gamma-cyhalothrin to Hyalella azteca. Bull Environ Contam Toxicol 79:548–551. doi:10.1007/s00128-007-9253-0

    Article  CAS  Google Scholar 

  • Soderlund DM et al (2002) Mechanisms of pyrethroid neurotoxicity: implications for cumulative risk assessment. Toxicology 171:3–59. doi:10.1016/s0300-483x(01)00569-8

    Article  CAS  Google Scholar 

  • SWAMP CSWRCB (2002) Toxicity testing sops: Hyalella azteca 10-day water toxicity test. Quality assurance management plan for the state of California’s surface water ambient monitoring program. Division of Water Quality, Sacramento

    Google Scholar 

  • US EPA (1991) Methods for measuring the acute toxicity of effluents and receiving waters to freshwater and marine organisms

  • US EPA (2000) Methods for measuring the toxicity and bioaccumulation of sediment-associated contaminants with freshwater invertebrates

  • US EPA (2002) Methods for measuring the acute toxicity of effluents and receiving waters to freshwater and marine organisms

  • Vaal MA, Van Leeuwen CJ, Hoekstra JA, Hermens JL (2000) Variation in sensitivity of aquatic species to toxicants: practical consequences for effect assessment of chemical substances. Environ Manag 25:415–423

    Article  Google Scholar 

  • Vais H, Atkinson S, Pluteanu F, Goodson SJ, Devonshire AL, Williamson MS, Usherwood PNR (2003) Mutations of the para sodium channel of Drosophila melanogaster identify putative binding sites for pyrethroids. Mol Pharmacol 64:914–922. doi:10.1124/mol.64.4.914

    Article  CAS  Google Scholar 

  • Wang F, Goulet RR, Chapman PM (2004) Testing sediment biological effects with the freshwater amphipod Hyalella azteca: the gap between laboratory and nature. Chemosphere 57:1713–1724. doi:10.1016/j.chemosphere.2004.07.050

    Article  CAS  Google Scholar 

  • Werner I, Deanovic LA, Markiewicz D, Khamphanh M, Reece CK, Stillway M, Reece C (2010) Monitoring acute and chronic water column toxicity in the northern Sacramento-San Joaquin Estuary, California, USA, using the euryhaline amphipod, Hyalella azteca: 2006 to 2007. Environ Toxicol Chem 29:2190–2199. doi:10.1002/etc.281

    Article  CAS  Google Scholar 

  • Werner I, Moran K (2008) Effects of pyrethroid insecticides on aquatic organisms. ACS Symp Ser 991:310–334. doi:10.1021/bk-2008-0991.ch014

    Article  CAS  Google Scholar 

  • Weston DP, Asbell AM, Lesmeister SA, Teh SJ, Lydy MJ (2014) Urban and agricultural pesticide inputs to a critical habitat for the threatened delta smelt (Hypomesus transpacificus). Environ Toxicol Chem 33:920–929. doi:10.1002/etc.2512

    Article  CAS  Google Scholar 

  • Weston DP, Ding Y, Zhang M, Lydy MJ (2013a) Identifying the cause of sediment toxicity in agricultural sediments: the role of pyrethroids and nine seldom-measured hydrophobic pesticides. Chemosphere 90:958–964. doi:10.1016/j.chemosphere.2012.06.039

    Article  CAS  Google Scholar 

  • Weston DP, Lydy MJ (2010) Urban and agricultural sources of pyrethroid insecticides to the Sacramento-San Joaquin delta of California. Environ Sci Technol 44:1833–1840. doi:10.1021/es9035573

    Article  CAS  Google Scholar 

  • Weston DP, Lydy MJ (2012) Stormwater input of pyrethroid insecticides to an urban river Environ Toxicol Chem:n/a-n/a. doi: 10.1002/etc.1847

  • Weston DP, Poynton HC, Wellborn GA, Lydy MJ, Blalock BJ, Sepulveda MS, Colbourne JK (2013b) Multiple origins of pyrethroid insecticide resistance across the species complex of a nontarget aquatic crustacean, Hyalella azteca. Proc Natl Acad Sci U S A 110:16532–16537. doi:10.1073/pnas.1302023110

    Article  CAS  Google Scholar 

  • Weston DP, Zhang M, Lydy MJ (2008) Identifying the cause and source of sediment toxicity in an agriculture-influenced creek. Environ Toxicol Chem 27:953–962. doi:10.1897/07-449.1

    Article  CAS  Google Scholar 

  • Wheelock CE et al (2005) Individual variability in esterase activity and cyp1a levels in chinook salmon (Oncorhynchus tshawyacha) exposed to esfenvalerate and chlorpyrifos. Aquat Toxicol (Amsterdam) 74:172–192. doi:10.1016/j.aquatox.2005.05.009

    Article  CAS  Google Scholar 

  • Woodworth LM, Montgomery ME, Briscoe DA, Frankham R (2002) Rapid genetic deterioration in captive populations: causes and conservation implications. Conserv Genet 3:277–288. doi:10.1023/a:1019954801089

    Article  CAS  Google Scholar 

  • Wouters W, van den Bercken J (1978) Action of pyrethroids. Gen Pharmacol 9:387–398

    Article  CAS  Google Scholar 

  • Xu Y, Spurlock F, Wang Z, Gan J (2007) Comparison of five methods for measuring sediment toxicity of hydrophobic contaminants. Environ Sci Technol 41:8394–8399. doi:10.1021/es071911c

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Linda Deanovic, Krista Hoffmann, A. Keith Miles, Jade Peralta, and Marie Stillway for their support. We are particularly grateful to Inge Werner who was involved in a pre-study for this project and who served as a mentor for Simone Hasenbein during her entire Ph.D. project. This study was funded by the State and Federal Contractors Water Agency (contract no. 15-33 to REC), California Department of Pesticide Regulation (contract no. 10-C0096 and 13-C0022 to SPL), and a postgraduate scholarship by Bayerische Forschungsstiftung, Germany (contract no. DOK-121-10 to JG). The authors acknowledge the support by the Faculty Graduate Center Weihenstephan of TUM Graduate School at Technische Universität München, Germany.

Compliance with ethical standards

Accepted principles of ethical and professional conduct have been followed in the study. The authors declare no potential conflicts of interest (financial or non-financial), and the welfare of animals was considered according to the relevant laws (only invertebrates were used here).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juergen Geist.

Additional information

Responsible editor: Cinta Porte

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hasenbein, S., Connon, R.E., Lawler, S.P. et al. A comparison of the sublethal and lethal toxicity of four pesticides in Hyalella azteca and Chironomus dilutus . Environ Sci Pollut Res 22, 11327–11339 (2015). https://doi.org/10.1007/s11356-015-4374-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-015-4374-1

Keywords

Navigation