Skip to main content

Effect of magnetic iron oxide (Fe3O4) nanoparticles on the growth and photosynthetic pigment content of Picochlorum sp.

Abstract

Magnetite iron oxide (Fe3O4) nanoparticles (NPs) are key materials applied in many different fields of modern technology. The potential environmental impact of these NPs is of great concern. In this study, initially the effect of Fe3O4 NPs size (20 and 40 nm) as well as bulk (>100 nm) at 200 mg L−1 on Picochlorum sp. (Trebouxiophyceae, Chlorophyta) is investigated during the different growth phases. The most inhibitory NPs were then chosen to assess their effects at different concentrations. The 20 nm NPs at 200 mg L−1 were found to significantly reduce the viable cell concentration and chlorophyll a content during the exponential growth phase compared to the other particle sizes. However, the 20 nm NPs at different concentrations were found to promote algal growth during the late growth stages (stationary and decline phases) compared to the control. Additionally, algae were found to accelerate the aggregation and sedimentation of nanoparticles into the medium and therefore can be considered as potential organisms for bioremediation of nano-pollution.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  • Abdel Halim MA (2012) The Influence of size and exposure duration of gold nanoparticles on gold nanoparticles levels in several rat organs in vivo. J Cell Sci Therapy 3:129. doi:10.4172/2157-7013.1000129

    CAS  Google Scholar 

  • Allsopp M, Santillo D, Johnston P (2007) A scientific critique of oceanic iron fertilization as a climate change mitigation strategy. Greenpeace research laboratories. Technical Note 07:32pp

    Google Scholar 

  • Aruoja V (2011) Algae Pseudokirchneriella subcapitata in environmental hazard evaluation of chemicals and synthetic nanoparticles, PhD thesis, Estonian University of Life Sciences, Tartu 114 pp

  • Arouja V, Dubourguier HC, Kasemets K, Kahru A (2009) Toxicity of nanoparticles of CuO, ZnO and TiO2 to microalgae Pseudokirchneriella subcapitata. Sci Total Environ 407:1461–1468

    Article  Google Scholar 

  • Baalousha M (2009) Aggregation and disaggregation of iron oxide nanoparticles: influence of particle concentration, pH and natural organic matter. Sci Total Environ 407:2093–2101

    CAS  Article  Google Scholar 

  • Baker TJ, Tyler CR, Galloway TS (2013) Impacts of metal and metal oxide nanoparticles on marine organisms. Environ Pollut 186:257–271

    Article  Google Scholar 

  • Barhoumi L, Dewez D (2013) Toxicity of superparamagnetic iron oxide nanoparticles on green alga Chlorella vulgaris. BioMed Res Inter 2013:1–11

    Article  Google Scholar 

  • Batley GE, Kirby JK, McLaughlin MJ (2013) Fate and risks of nanomaterials in aquatic and terrestrial environments. Acc Chem Res 46:854–862

    CAS  Article  Google Scholar 

  • Berry CC, Curtis ASG (2003) Functionalization of magnetic nanoparticles for applications in biomedicine. J Phys D 36:R198–R206

    CAS  Article  Google Scholar 

  • Bystrzejeska-Piotrowska G, Golimowski J, Urban JP (2009) Nanoparticles: their potential toxicity, waster and environmental management. Waste Manage 29:2587–2595

    Article  Google Scholar 

  • Callieri C (2008) Picophytoplankton in freshwater ecosystems: the importance of small- sized phototrophs. Freshw Rev 1:1–28

    Article  Google Scholar 

  • Chen X, Zhu X, Li R, Yao H, Lu Z, Yang X (2012) Photosynthetic toxicity and oxidative damage induced by nano-Fe3O4 on Chlorella vulgaris in aquatic environment. Open J Ecol 2:21–28

    CAS  Article  Google Scholar 

  • Cheng F, Su C, Yang Y, Yeh Y, Tsi C, Wu CL, Wu MT, Sheieh DB (2005) Characterization of aqueous dispersions of Fe3O4 nanoparticles and their biomedical applications. Biomaterials 26:729–738

    CAS  Article  Google Scholar 

  • Clément L, Hurel C, Marmier N (2013) Toxicity of TiO2 nanoparticles to cladocerans, algae, rotifers and plants—effects of size and crystalline structure. Chemosphere 90:1083–1090

    Article  Google Scholar 

  • D’Autréaux B, Toledano MB (2007) ROS as signaling molecules: mechanisms that generate specificity in ROS homeostasis. Nat Rev Mol Cell Biol 8:813–824

    Article  Google Scholar 

  • Díez B, Massana R, Estrada M, Pedrós-Alió C (2004) Distribution of eukaryotic picoplankton assemblages across hydrographic fronts in the Southern Ocean, studied by denaturing gradient gel electrophoresis. Limnol Oceanogr 49:1022–1034

    Article  Google Scholar 

  • Dimier C, Corato F, Saviello G, Brunet C (2007) Photophysiological properties of the marine picoeukaryote Picochlorum RCC 237 (Trebouxiophyceae, Chlorophyta). J Phycol 43:275–283

    CAS  Article  Google Scholar 

  • Fidler MC, Walczyk T, Davidsson L, Zeder C, Sakaguchi N, Juneja LR, Hurrell RF (2004) A micronized, dispersible ferric pyrophosphate with high relative bioavailability in man. Br J Nutr 91(1):107–112

    CAS  Article  Google Scholar 

  • Figuerola A, Corato RD, Manna L, Pellegrino T (2010) From iron oxide nanoparticles towards advanced iron-based inorganic materials designed for biomedical applications. Pharmacol Res 62:126–143

    CAS  Article  Google Scholar 

  • Foflonker F, Price DC, Qiu H, Palenik B, Wang S, Bhattacharya D (2014) Genome of the halotolerant green alga Picochlorum sp. reveals strategies for thriving under fluctuating environmental conditions. Environ Microbiol. doi:10.1111/1462- 2920.12541

    Google Scholar 

  • Fuller NJ, Campbell C, Allen DJ, Pitt FD, Zwirglmaier K, Gall FL, Vaulot D, Scanlan DJ (2006) Analysis of photosynthetic picoeukaryote diversity at open ocean sites in the Arabian Sea using a PCR biased towards marine algal plastids. Aquat Microb Ecol 43:79–93

    Article  Google Scholar 

  • Garcia A, Espinosa R, Delgado L, Casals E, Gonzalez E, Puntes V, Barata C, Font X, Sanchez A (2011) Acute toxicity of cerium oxide, titanium oxide and iron oxide nanoparticles using standardized tests. Desalination 269:136–141

    CAS  Article  Google Scholar 

  • Gledhill M, Buck KN (2012) The organic complexation of iron in the marine environment: a review. Front Microbiol 3:1–17

    Google Scholar 

  • Ghafariyan MH, Malakouti MJ, Dadpour M, Stroeve P, Mahmoudi M (2013) Effect of magnetite nanoparticles on soybean chlorophyll. Environ Sci Technol 47:10645–10652

    CAS  Google Scholar 

  • Gong N, Shao K, Feng W, Lin Z, Liang C, Sun Y (2011) Biotoxicity of nickel oxide nanoparticles and bio-remediation by microalgae Chlorella vulgaris. Chemosphere 83:510–516

    CAS  Article  Google Scholar 

  • Herrero A, Flores E (2008) The cyanobacteria. In: Herrero (ed) Molecular biology, genetics and evolution. Caister, Norfolk, pp 21–34

    Google Scholar 

  • Huang CP, Cha DK, Ismat SS (2005) Progress report: short-term chronic toxicity of photocatalytic nanoparticles to bacterial, algae and zooplankton. University of Delaware

  • Hund-Rinke K, Simon M (2006) Ecotoxic effect of photocatalytic active nanoparticles TiO2 on algae and daphnids. Environ Sci Pollut Res 13:225–232

    CAS  Article  Google Scholar 

  • Ji J, Long Z, Lin D (2011) Toxicity of oxide nanoparticles to the green algae Chlorella sp. Chem Eng J 170:525–530

    CAS  Article  Google Scholar 

  • Kadar E, Rooks P, Lakey C, White DA (2012) The effect of engineered nanoparticles on growth and metabolic status of marine microalgae culture. Sci Total Environ 439:8–17

    CAS  Article  Google Scholar 

  • Kadar E, Lowe D, Sole M, Fisher AS, Jha AN, Readman JW, Hutchinson TH (2010) The uptake and biological responses to non-Fe versus soluble FeCl3 in excised mussel gills. Anal Bioanal Chem 396:657–666

    CAS  Article  Google Scholar 

  • Klaine SJ, Alvarez PJJ, Batley GE, Fernandes TF, Handy RD, Lyon DY, Mahendra S, McLaughlin MJ, Lead JR (2008) Nanomaterials in the environment: behavior, fate, bioavailability, and effects. Environ Toxicol Chem 27:1825–1851

    CAS  Article  Google Scholar 

  • LeBel C, Ishiropoulos H, Bondy S (1992) Evaluation of the probe 2′,7′-dichlorofluorescin as an indicator of reactive oxygen species formation and oxidative stress. Chem Res Toxicol 5:227–231

    CAS  Article  Google Scholar 

  • Li WKW (1994) Primary productivity of prochlorophytes, cyanobacteria, and eukaryotic ultraphytoplankton: measurements from flow cytometric sorting. Limnol Oceanogr 39:169–175

    CAS  Article  Google Scholar 

  • Li H, Zhou Q, Wu Y, Fu J, Wang T, Jiang G (2009) Effects of waterborne nano-iron on medaka (Oryzias latipes): antioxidant enzymatic activity, lipid peroxidation and histopathology. Ecotoxicol Environ Saf 72:684–692

    CAS  Article  Google Scholar 

  • Limbach LK, Bereiter R, Muller E, Krebs R, Galli R, Stark WJ (2008) Removal of oxide nanoparticles in a model wastewater treatment plant: influence of agglomeration and surfactants on clearing efficiency. Environ Sci Technol 42:5828–5833

    CAS  Article  Google Scholar 

  • Luetz-Meindl U, Luetz C (2006) Analysis of element accumulation in cell wall attached and intracellular particles of snow algae by EELS and ESI. Micro 37:452–458

    CAS  Article  Google Scholar 

  • Madigan MT, Martinko JM, Parker J (2003) Brock biology of microorganisms. Prentice Hall/ Pearson Higher Education Group, Upper Saddle River

    Google Scholar 

  • Manzo S, Miglietta M, Rametta G, Buono S, Francia G (2013) Toxic effects of ZnO nanoparticles towards marine algae Dunaliella tortiolecta. Sci Total Environ 445–446:371–376

    Article  Google Scholar 

  • Metzler DM, Erdem A, Tseng YH, Huang CP (2012) Responses of algal cells to engineered nanoparticles measured as algal cell population, chlorophyll a, and lipid peroxidation: effect of particle size and type. Journal of Nanotechnology Article ID 237284, 12 pages, doi:10.1155/2012/237284

  • Miao AJ, Quigg A, Schwehr K, Xu C, Santschi P (2007) Engineered silver nanoparticles (ESNs) in coastal marine environments: bioavailability and toxic effects to the phytoplankton Thalassiosira weissflogii. 2nd international conference on the environmental effects of nanoparticles and nanomaterials, 24th- 25th September, London UK

  • Miller RJ, Lenihan HS, Muller EB, Tseng N, Hanna SK, Keller AA (2010) Impacts of metal oxide nanoparticles on marine phytoplankton. Environ Sci Technol 44:7329–7334

    CAS  Article  Google Scholar 

  • Moreira D, Lopez- Garcia P (2002) The molecular ecology of microbial eukaryote, unveils a hidden world. Trends Microbiol 10:31–38

    CAS  Article  Google Scholar 

  • Mueller NC, Nowack B (2010) Nano zero valent iron—the solution for water and soil remediation. Report of the observatory NANO. Available at: www.observatorynano.eu

  • Nagata T (1986) The seasonal abundance and vertical distribution of the <3 μm phytoplankton in the North Basin of lake Biwa. Ecol Res 1:207–221

    Article  Google Scholar 

  • Nam J, Lead JR (2008) Manufactured nanoparticles: an overview of their chemistry, interactions and potential environmental implications. Sci Total Environ 400(1–3):396–414

    Article  Google Scholar 

  • Naqvi S, Samim M, Abdin MZ, Ahmed FJ, Maitra AN, Prashant CK, Dinda AK (2010) Concentration-dependent toxicity of iron oxide nanoparticles mediated by increased oxidative stress. Int J Nanomed 5:983–989

    CAS  Article  Google Scholar 

  • Navarro E, Baun A, Behra R, Hartmann NB, Filser J, Miao AJ, Quigg A, Santschi PH, Sigg L (2008) Environmental behavior and ecotoxicity of engineered nanoparticles to algae, plants and fungi. Ecotoxicology 17:372–386

    CAS  Article  Google Scholar 

  • Not F, Massana R, Latasa M, Marie D, Colson C, Eikrem W, Pedrós-Alió C, Vaulot D, Simonn N (2005) Late summer community composition and abundance of photosynthetic picoeukaryotes in Norwagian and Barents seas. Limnol Oceanogr 50:1677–1686

    CAS  Article  Google Scholar 

  • Ovecka M, Lang I, Baluska F, Ismail A, Illes P, Lichtscheidl IK (2005) Endocytosis and vesicle trafficking during tip growth of root hairs. Protoplasma 226:39–54

    CAS  Article  Google Scholar 

  • Petri-Fink A, Chastellain M, Juillerat-Jeanneret L, Ferrari A, Hofmann H (2005) Development of functionalized superparamagnetic iron oxide nanoparticles for interaction with human cancer cells. Biomaterials 26:2685–2694

    CAS  Article  Google Scholar 

  • Quigg A, Chin WC, Chen CS, Zhang S, Jiang Y, Miao AJ, Schwehr KA, Xu C, Santschi PH (2013) Direct and indirect toxic effects of engineered nanoparticles on algae: role of natural organic matter. ACS Sustainable Chem Eng 1:686–702

    CAS  Google Scholar 

  • Rajkishore SK, Subramanian KS, Natarajan N, Gunasekaran K (2013) Nanotoxicity at various trophic levels—a review. Biogeosciences 8:975–982

    CAS  Google Scholar 

  • Rosko JJ, Rachlin JW (1977) The effect of cadmium, copper, mercury, zinc and lead on cell division, growth, and chlorophyll a content of the chlorophyte Chlorella vulgaris. Bull Torrey Botan Club 104(3):226–233

    CAS  Article  Google Scholar 

  • Sadiq IM, Pakrashi S, Chandrasekaran N, Mukherjee A (2011) Studies on toxicity of aluminium oxide (Al2O3) nanoparticles to microalgae species; Scenedesmus sp. and Chlorella sp. J Nanopart Res 13:3287–3299

    CAS  Article  Google Scholar 

  • Shen YF, Tang J, Nei ZH, Wang YD, Ren Y, Zuo L (2009) Preparation and application of magnetic Fe3O4 nanoparticles for wastewater purification. Sep Purif Technol 68:312–319

    CAS  Article  Google Scholar 

  • Soenen SJ, Cuyper MD, Smedt SCD, Braeckmans K (2012) Investigating the toxic effects of iron oxide nanoparticles. Methods Enzym 509:195–224

    CAS  Article  Google Scholar 

  • Soldo D, Hari R, Sigg L, Behra R (2005) Tolerance of Oocystis nephrocytioides to copper: intracellular distribution and extracellular complexation of copper. Aquat Toxicol 71:307–317

    CAS  Article  Google Scholar 

  • Somogyi B, Felföldi T, Vanyovszki J, Ágyi Á, Márialigeti K, Vörös L (2009) Winter bloom of picoeukaryotes in Hungarian shallow turbid soda pans and the role of light and temperature. Aquat Ecol 43:735–744

    CAS  Article  Google Scholar 

  • Søndergaard M (1990) Picophytoplankton in Danish Lakes. Verth Int Ver Limnol 24:609–612

    Google Scholar 

  • Stevenson LM, Dickson H, Klanjscek Keller A, McCauley E, Nisbet RM (2013) Environmental feedbacks and engineered nanoparticles: mitigation of silver nanoparticle toxicity to Chlamydomonas reinhardtii by algal-produced organic compounds. PLoS ONE 8:e74456

    CAS  Article  Google Scholar 

  • Tran D, Giordano M, Louime C, Tran N, Vo T, Nguyen D, Hoang T (2014) An isolated Picochlorum species for aquaculture, food, and biofuel. N Am J Aquacult 76(4):305–311. doi:10.1080/15222055.2014.911226

    Article  Google Scholar 

  • Vohra FC (1966) Determination of photosynthetic pigment in seawater. Monographs on oceanographic methodology. UNESCO, France, p 66

    Google Scholar 

  • Walne PR (1970) Studies on food value of nineteen genera of algae to juvenile bivalves of the genera Ostrea, Crassostrea, Mercenaria and Mytilus. Fish Invest Lond Ser 2 26(5):1–62

    Google Scholar 

  • Wei CX, Zhang YB, Guo J, Han B, Yang X, Yaun JL (2010) Effects of silica nanoparticles on growth and photosynthetic pigment content of Scenedesmus obliquus. J Environ Sci 22:155–160

    CAS  Article  Google Scholar 

  • Whang WX, Dei RCH (2003) Bioavailability of iron complexed with organic colloids to the cyanobacteria Synechococcus and Trichodesmium. Aqaut Microb Ecol 33:247–259

    Article  Google Scholar 

  • WHOI (Woods Hole Oceanographic Institution) (2007) Iron fertilization in southern ocean increased growth of algae that absorb greenhouse gases, and could cool climate. Available at: http://www.whoi.edu/main/news-releases/1995-2004?tid=3622&cid=971Accessed: December, 2013

  • Yavuz CT, Mayo JT, Yu WW, Prakash A, Falkner JC, Yean S, Gong LL, Shipley HJ, Kan A, Tomson M, Natelson D, Colvin VL (2006) Low field magnetic separation of monodisperse Fe3O4 nanocrystals. Science 314:964–967

    Article  Google Scholar 

  • Zhang WX (2003) Nanoscale iron particles for environmental remediation: an overview. J Nanopart Res 5:323–332

    CAS  Article  Google Scholar 

  • Zhang Y, Chen Y, Westerhoff P, Crittenden J (2009) Impact of natural organic matter and divalent cations on the stability of aqueous nanoparticles. Water Res 43:4249–4257

    CAS  Article  Google Scholar 

Download references

Acknowledgments

This work was supported by grant number (11/2012) funded by Deanship of Scientific Research, University of Bahrain. The authors are grateful to Mrs. Hanan Abbas for SEM and EDS analyses, Mr Ahmed Addad for TEM/EDX analysis, Mr. Makki Daffalla, and Mr. Etienne Dewailly for technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Layla J. Hazeem.

Additional information

Responsible editor: Philippe Garrigues

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hazeem, L.J., Waheed, F.A., Rashdan, S. et al. Effect of magnetic iron oxide (Fe3O4) nanoparticles on the growth and photosynthetic pigment content of Picochlorum sp.. Environ Sci Pollut Res 22, 11728–11739 (2015). https://doi.org/10.1007/s11356-015-4370-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-015-4370-5

Keywords

  • Algae
  • Picochlorum sp.
  • Nanoparticles
  • Magnetite Fe3O4
  • Chlorophyll a
  • Toxic effect