Skip to main content
Log in

DNA-protein cross-links involved in growth inhibition of rice seedlings exposed to Ga

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Hydroponic experiments were conducted with rice seedlings (Oryza sativa L. cv. XZX45) exposed to gallium nitrate (Ga3+) to investigate the accumulation of Ga in plant tissues and phytotoxic responses. Results showed that phyto-transport of Ga was apparent, and roots were the dominant site for Ga accumulation. The total accumulation rates of Ga responded biphasically to Ga treatments by showing increases at low (1.06–8.52 mg Ga/L) and constants at high (8.52–15.63 mg Ga/L) concentrations, suggesting that accumulation kinetics of Ga followed a typical saturation curve. Higher amount of Ga accumulation in plant tissues led to significant inhibition in relative growth rate and water use efficiency in a dose-dependent manner. DNA-protein cross-links (DPCs) analysis revealed that overaccumulation of Ga in plant tissues positively stimulated formation of DPCs in roots. Likewise, the measure of root cell viability evaluated by Evan blue uptake showed a similar trend. These results suggested that Ga can be absorbed, transported, and accumulated in plant materials of rice seedlings. Overaccumulation of Ga in plant tissues provoked the formation of DPCs in roots, which resulted in cell death and growth inhibition of rice seedlings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Achery VMM, Jena S, Panda KK, Panda BB (2008) Aluminum induced oxidative stress and DNA damage in root cells of Allium cepa L. Ecotox Environ Safe 70:300–310

    Article  Google Scholar 

  • Babula P, Adam V, Opatrilova R, Zehnalek J, Havel L, Kizek R (2008) Uncommon heavy metals, metalloids and their toxicity: a review. Environ Chem Lett 6:189–213

    Article  CAS  Google Scholar 

  • Baker CJ, Mock NM (1994) An improved method for monitoring cell death in cell suspension and leaf disc assays using Evans blue. Plant Cell Tissue Org Cult 39:7–12

    Article  Google Scholar 

  • Banks MK, Schwab AP, Henderson C (2006) Leaching and reduction of chromium in soil as affected by soil organic content and plants. Chemosphere 62:255–264

    Article  CAS  Google Scholar 

  • Barker S, Weinfeld M, Murray D (2005) DNA-protein crosslinks: their induction, repair, and biological consequences. Mutat Res 589:111–135

    Article  CAS  Google Scholar 

  • Cai FY, Wang M, Wang J, Qin LJ, Yang X (2009) Oxidative damage of rat liver cells induced by DPB. J Pub Health Prev Med 20:4–7 (in Chinese)

    Google Scholar 

  • Chakrabarti SK, Bai C, Subramanian KS (2001) DNA-protein rosslinks induced by nickel compounds in isolated rat lymphocytes: role of reactive oxygen species and specific amino acids. Toxicol Appl Pharmacol 170:153–165

  • Citterio S, Aina R, Labra M, Ghiani A, Fumagalli P, Sgorbati S, Santagostino A (2002) Soil genotoxicity: a new strategy based on biomolecular tools and plants bioindicators. Environ Sci Technol 36:2748–2753

    Article  CAS  Google Scholar 

  • Cuypers A, Smeets K, Ruytinx J, Opdenakker K, Keunen E, Remans T, Horemans N, Vanhoudt N, Van Sanden S, Van Belleghem F, Guisez Y, Colpaert J, Vangronsveld J (2011) The cellular redox state as a modulator in cadmium and copper responses in Arabidopsis thaliana seedlings. J Plant Physiol 168:309–316

    Article  CAS  Google Scholar 

  • Ebbs SD, Piccinin RC, Goodger JQD, Kolev SD, Woodrow IE, Baker AJM (2008) Transport of ferrocyanide by two eucalypt species and sorghum. Int J Phytorem 10:343–357

  • Eide D (1997) Molecular biology of iron and zinc uptake in eukaryotes. Curr Opin Cell Biol 9:573–577

    Article  CAS  Google Scholar 

  • Gichner T, Patkova Z, Szakova J, Demnerova K (2004) Cadmium induces DNA damage in tobacco roots, but no DNA damage, somatic mutations or homologous recombination in tobacco leaves. Mutat Res 559:49–57

  • Gichner T, Patkova Z, Szakova J, Znidar I, Mukherjee A (2008) DNA damage in potato plants induced by cadmium, ethyl methanesulphonate and γ-rays. Environ Exp Bot 62:113–1194

    Article  CAS  Google Scholar 

  • Harada E, Sugase K, Namba K, Iwashita T, Murata Y (2007) Structural element responsible for the Fe(III)–phytosiderophores specific transport by HvYS1 transporter in barley. FEBS Lett 581:4298–4302

    Article  CAS  Google Scholar 

  • Huang WX, Luo ZA, Yang F (2003) Study of Ga recovery from granulation slag. Rare Met Cem Carbides 31:8–11 (in Chinese)

  • Ide H, Shoulkamy MI, Nakano T, Miyamoto-Matsubara M, Salem AM (2011) Repair and biochemical effects of DNA-protein crosslinks. Mutat Res 711:113–122

    Article  CAS  Google Scholar 

  • Johnson GV, Barton LL (2007) Inhibition of iron deficiency stress response in cucumber by rare earth elements. Plant Physiol Biochem 45:302–308

    Article  CAS  Google Scholar 

  • Kim SA, Guerinot ML (2007) Mining iron: iron uptake and transport in plants. FEBS Lett 581:2273–2280

    Article  CAS  Google Scholar 

  • Kinraide TB, Yermiyahu U (2007) A scale of metal ion binding strengths correlating with ionic charge, Pauling electronegativity, toxicity, and other physiological effects. J Inorg Biochem 101:1201–1213

    Article  CAS  Google Scholar 

  • Koodkaew I, Sunohara Y, Matsuyama S, Matsumoto H (2012) Phytotoxic action mechanism of hapalocyclamide in lettuce seedlings. Plant Physiol Biochem 58:23–28

    Article  CAS  Google Scholar 

  • Kopittke PM, Mekenna BA, Blamey FPC, Wehr JB, Menzies NW (2009) Metal-induced cell rupture in elongating roots is associated with metal ion binding strengths. Plant Soil 322:303–315

    Article  CAS  Google Scholar 

  • Kragten J (1978) Atlas of metal-ligand equilibria in aqueous solution. John Wiley & Sons, New York

    Google Scholar 

  • Kumar AK, Prasad MNV, Achary VMM, Panda BB (2013) Elucidation of lead-induced oxidative stress in Talinum triangulare roots by analysis of antioxidant responses and DNA damage at cellular level. Environ Sci Pollut Res 20:4551–4561

    Article  CAS  Google Scholar 

  • Kuykendall JR, Miller KL, Mellinger KN, Cain AV, Perry MW, Bradley M, Jarvi EJ, Paustenbach DJ (2009) DNA-protein cross-links in erythrocytes of freshwater fish exposed to hexavalent chromium or divalent nickel. Arch Environ Contam Toxicol 56:260–267

    Article  CAS  Google Scholar 

  • Liu JJ, Liu Y (2012) Determination of trace metal elements in water samples from Gansu-Ningxia-Inner Mongolia section of Yellow River by HR-ICP-MS. Sepctrosc Spectr Anal 32:331–332

  • Liu JG, Zhu QS, Zhang ZJ, Xu JK, Yang JC, Wong MH (2005) Variations in cadmium accumulation among rice cultivars and types and the selection of cultivars for reducing cadmium in the diet. J Sci Food Agric 85:147–153

  • Lockshin RA, Zakeri Z (2004) Apoptosis, autophagy, and more. Int J Biochem Cell Biol 36:2405–2419

    Article  CAS  Google Scholar 

  • Maluszynska J, Juchimiuk J (2005) Plant genotoxicity: a molecular cytogenetic approach in plant bioassays. Arh Hig Rada Toksikol 56:177–184

    Google Scholar 

  • McCabe PF, Levine A, Meijer PJ, Tapon NA, Pennell RI (1997) A programmed cell death pathway activated in carrot cells cultured at low cell density. Plant J 12:267–280

    Article  CAS  Google Scholar 

  • Mino Y, Ishida T, Ota N, Inoue M, Nomoto K, Takemoto T, Tanaka H, Sugiura Y (1983) Mugineic acid-iron (III) complex and its structurally analogous cobalt (III) complex: characterization and implication for absorption and transport of iron in gramineous plants. J Am Chem Soc 105:4611–4676

    Article  Google Scholar 

  • Monteiro MS, Rodriguez E, Loureiro J, Mann RM, Soares AMVM, Santos C (2010) Flow cytometric assessment of Cd genotoxicity in three plants with different metal accumulation and detoxification capacities. Ecotox Environ Saf 73:1231–1237

    Article  CAS  Google Scholar 

  • Palta JP, Levitt J, Stadelmann EJ (1978) Plant viability assay. Cryobiology 15:249–255

    Article  CAS  Google Scholar 

  • Panda KK, Achary VMM, Krishnaveni R, Padhi BK, Sarangi SN, Sahu SN, Panda BB (2011) In vitro biosynthesis and genotoxicity bioassay of silver nanoparticles using plants. Tocxicol In Vitro 25:1097–1105

    Article  CAS  Google Scholar 

  • Petriccione M, Forte V, Valente D, Ciniglia C (2013) DNA integrity of onion root cells under catechol influence. Environ Sci Pollut Res 20:4859–4871

    Article  CAS  Google Scholar 

  • Reape TJ, McCabe PF (2008) Apoptotic-like programmed cell death in plants. New Phytol 180:13–26

    Article  CAS  Google Scholar 

  • Reid RJ, Rengel Z, Smith FA (1996) Membrane fluxes and comparative toxicities of aluminum, scandium and gallium. J Exp Bot 47:1881–1888

    Article  CAS  Google Scholar 

  • Ren JH, Ma L, Sun H, Cai F, Luo J (2014) Antimony uptake, translocation and speciation in rice plants exposed to antimonite and anal antimonate. Sci Tot Environ 475:83–89

    Article  CAS  Google Scholar 

  • Rodriguez E, Fernandes JP, Silva RA, Santos CL (2011) Cr(VI) induces DNA damage, cell cycle arrest and polyploidization: a flow cytometric and comet assay study in Pisum sativum. Chem Res Toxicol 24:1040–1047

    Article  CAS  Google Scholar 

  • Sachs L (1992) Angewandte statistik. Springer Verlag, Berlin

    Book  Google Scholar 

  • Shamberger RJ (1981) Selenium in the environment. Sci Tot Envrion 17:59–74

    Article  CAS  Google Scholar 

  • Shoulkamy MI, Nakano T, Ohshima M, Hirayama R, Uzawa A, Furusawa Y, Hiroshi I (2012) Detection of DNA-protein crosslinks (DPCs) by novel direct fluorescence labeling methods: distinct stabilities of aldehyde and radiation-induced DPCs. Nucleic Acids Res 40:e143

    Article  CAS  Google Scholar 

  • Smeets K, Opdenakker K, Remans T, Van Sanden S, Van Bellephem F, Semane B, Horemans N, Guisez Y, Vangronsveld J, Cuypers A (2009) Oxidative stress-related responses at transcriptional and enzymatic levels after exposure to Cd or Cu in a multipollution context. J Plant Physiol 166:1982–1992

    Article  CAS  Google Scholar 

  • Souguir D, Ferjani E, Ledoigt G, Goupil P (2008) Exposure of Vicia faba and Pisum sativum to copper-induced genotoxicity. Protoplasma 233:203–207

    Article  CAS  Google Scholar 

  • Tanaka A (2004) Toxicity of indium arsenide, gallium arsenide, and aluminium gallium arsenide. Toxicol Appl Pharm 198:405–411

    Article  CAS  Google Scholar 

  • Trapp S, McFarlane C, Matthies M (1994) Model for uptake of xenobiotics into plants: validation withbromacil experiments. Environ Toxicol Chem 13:413–422

    Article  CAS  Google Scholar 

  • Trapp S, Zambrano KC, Kusk KO, Karlson U (2000) A phytotoxicity test using transpiration of willows. Arch Environ Contam Toxicol 39:154–160

    Article  CAS  Google Scholar 

  • Türkoglu S (2007) Genotoxicity of five food preservatives tested on root tips of Allium cepa L. Mutat Res 626:4–14

    Article  Google Scholar 

  • Valverde M, Trejo C, Rojas E (2001) Is the capacity of leadacetate and cadmium chloride to induce genotoxic damagedue to direct DNA-metal interaction? Mutagenesis 16:265–270

    Article  CAS  Google Scholar 

  • Wang Q, An YL, Gy XX, Fu SH, Fy L, Yang HY (2010) Enrichment of the dispersed elements Cd, Ge and Ga in the Daliangzi lead-zinc deposit, Huidong Sichuan. Sediment Geol Techyan Geol 30:78–84 (in Chinese)

    Google Scholar 

  • Wang CR, Zhang KG, He M, Jiang CJ, Tian LM, Tian Y, Wang XR (2012) Mineral nutrient imbalance, DNA lesion and DNA-protein crosslink involved in growth retardation of Vicia faba L seedlings exposed to lanthanum ions. J Environ Sci-China 24:214–220

    Article  Google Scholar 

  • Wheeler DM, Power IL (1995) Comparison of plant uptake and plant toxicity of various ions in wheat. Plant Soil 172:167–173

    Article  CAS  Google Scholar 

  • Yin SG, Chen HX, Luo XP (2006) Gallium resources application and the studying situation on separation and abstraction technology. Sichuan Nonferrous Metals 6:24–27 (in Chinese)

    Google Scholar 

  • Yu XZ, Zhang FZ (2013) Effects of exogenous thiocyanate on mineral nutrients, antioxidative responses and free amino acids in rice seedlings. Ecotoxicology 22:752–760

    Article  CAS  Google Scholar 

  • Yu JB, Dong HF, Wang HB, Chen XB, Xie WJ, Mao PL, Gao YJ, Shan K, Chen JC, Ma XM (2011) Spatial distribution characteristics of metals in new-born coastal wetlands in the Yellow river Delta. Wetl Sci 9:297–304 (in Chinese)

    Google Scholar 

  • Yu XZ, Zhang XH, Liu W (2014) Responses of free amino acids in rice seedlings during cyanide metabolism. Environ Sci Pollut Res 21:1411–1417

    Article  CAS  Google Scholar 

  • Zeng F, Zhou W, Qiu B, Ali S, Wu F, Zhang G (2011) Subcellular distribution and chemical forms of chromium in rice plants suffering from different levels of chromium toxicity. J Plant Nutr Soil Sci 174:249–256

    Article  CAS  Google Scholar 

  • Zhu YL, Zayed AM, Qian JH, Souza M, Terry N (1999) Phytoaccumulation of trace elements by wetland plants: II. Water hyacinth. J Environ Qual 28:339–344

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the research foundations from Guilin University of Technology (Grant No.: GUTRC2011007) and The Guangxi Key Laboratory of Theory and Technology for Environmental Pollution Control (Grant No.: 1201Z029) and The Guangxi Talent Highland for Hazardous Waste Disposal Industrialization.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiao-Zhang Yu.

Additional information

Responsible editor: Elena Maestri

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, XZ., Zhang, XH. DNA-protein cross-links involved in growth inhibition of rice seedlings exposed to Ga. Environ Sci Pollut Res 22, 10830–10838 (2015). https://doi.org/10.1007/s11356-015-4305-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-015-4305-1

Keywords

Navigation