Skip to main content
Log in

Genotoxic potency of mercuric chloride in gill cells of marine gastropod Planaxis sulcatus using comet assay

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

In vivo and in vitro exposures were used to investigate the genotoxicity of mercuric chloride (HgCl2) to the marine snail, Planaxis sulcatus. The comet assay protocol was validated on gill cells exposed in vitro to hydrogen peroxide (H2O2, 0–50 μM). Snails were exposed in vivo for 96 h to HgCl2 (10, 20, 50, and 100 μg/l). Our results showed significant concentration-dependent increase in the tail DNA (TDNA) and olive tail moment (OTM) in exposed snails for all doses compared with controls. In vitro exposure to HgCl2 (10–100 μg/l) resulted in significantly higher values for TDNA at all concentrations. Our results showed that DNA damage increased in the gill cell with increasing exposure time. This study demonstrates the usefulness of comet assay for detection of DNA damage after exposure to HgCl2 and the sensitivity of marine snail P. sulcatus as a good candidate species for metal pollution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Abdel-Halim KY, El-Saad AMA, Talha MM, Hussein AA, Bakry NM (2013) Oxidative stress on land snail Helix aspersa as a sentinel organism for ecotoxicological effects of urban pollution with heavy metals. Chemosphere 93(6):1131–1138

    CAS  Google Scholar 

  • Absolom DR (1986) Basic methods for the study of phagocytosis. Method Enzymol 132:95–182

    CAS  Google Scholar 

  • Almeida C, Pereira CG, Gomes T, Cardoso C, Bebianno MJ, Cravo A (2013) Genotoxicity in two bivalve species from a coastal lagoon in the south of Portugal. Mar Environ Res 89:29–38

    CAS  Google Scholar 

  • An L, Zheng B, Wang L, Zhang Y, Chen H, Zhao X, Zhang L, Lei K (2012) Biomarker responses and genotoxicity in the mud snail (Bullacta exarata) as indicators of coastal contamination. Mar Pollut Bull 64:303–309

    CAS  Google Scholar 

  • Anderson D, Yu TW, Phillips BJ, Schmezer P (1994) The effect of various antioxidants and other modifying agents on oxygenradical-generated DNA damage in human lymphocytes in the Comet assay. Mutat Res Fundam Mol Mech Mutagen 307:261–271

    CAS  Google Scholar 

  • Arabi M (2004) Analyses of impact of metal ion contamination on carp (Cyprinus carpio L) gill cell suspensions. Biol Trace Elem Res 100:229–245

    CAS  Google Scholar 

  • Auffret M (2005) Bivalves as models for marine immunotoxicology. In: Tryphonas H, Fournier M, Blakley BR, Smits JEG, Brousseau P (eds) Investigative immunotoxicology models and approaches in immunotoxicology. CRC Press, Boca Raton, pp 29–48

    Google Scholar 

  • Berto D, Giani M, Covelli S, Boscolo R, Cornello M, Macchia S, Massironi M (2006) Mercury in sediments and Nassarius reticulatus (Gastropoda Prosobranchia) in the southern Venice Lagoon. Sci Total Environ 368(1):298–305

    CAS  Google Scholar 

  • Bhagat J, Ingole B, Sarkar A, Gunjikar M (2012) Measurement of DNA damage in P sulcatus as a biomarker of genotoxicity. Ecoscan 1(01–04):219–223

    Google Scholar 

  • Bhattacharya B, Sarkar SK (1996) Total mercury content in marine organisms of the hooghly estuary West Bengal India. Chemosphere 33(1):147–158

    CAS  Google Scholar 

  • Bigas M, Durfort M, Poquet M (2001) Cytological effects of experimental exposure to Hg on the gill epithelium of the European flat oyster Ostrea edulis: ultrastructural and quantitative changes related to bioaccumulation. Tissue Cell 33:178–188

    CAS  Google Scholar 

  • Bille L, Binato G, Cappa V, Toson M, Pozza MD, Arcangeli G, Ricci A, Angeletti R, Piro R (2015) Lead mercury and cadmium levels in edible marine molluscs and echinoderms from the Veneto Region (north-western Adriatic Sea Italy). Food Control 50:362–370

    CAS  Google Scholar 

  • Blackmore G, Wang WX (2004) The transfer of cadmium mercury methylmercury and zinc in an intertidal rocky shore food chain. J Exp Mar Biol Ecol 307(1):91–110

    CAS  Google Scholar 

  • Boisson F, Hartl MGJ, Fowler SW, Amiard-Triquet C (1998) Influence of chronic exposure to silver and mercury in the field on the bioaccumulation potential of the bivalve Macoma balthica. Mar Environ Res 45:325–340

    CAS  Google Scholar 

  • Botton ML (2000) Toxicity of cadmium and mercury to horseshoe Crab (Limulus polyphemus) embryos and larvae. Bull Environ Contam Toxicol 64:137–143

    CAS  Google Scholar 

  • Brambati A (1997) Metalli pesanti nelle lagune di Marano e Grado Piano di studi finalizzato all’accertamento di sostanze persistenti nelle Lagune di Marano e Grado ed al loro risanamento Trieste7 (RFVG) Direzione Regionale dell’Ambiente Servizio dell’Idraulica, 175 pp

  • Brousseau P, Bouchard N, Godbout P, Cyr D, Pellerin-Massicotte J, Fourmer M (1997) FP4 Evaluation of phagocytosis by selected bivalve species to be used as a sensitive biomarker of immunotoxicity following exposure to marine contaminants. Dev Comp Immunol 21(2):128

    Google Scholar 

  • Buzina R, Suboticanec K, Vukusic J, Sapunar J, Antonic K, Zorica M (1989) Effect of industrial pollution on seafood content and dietary intake of total and methylmercury. Sci Total Environ 78:45–57

    CAS  Google Scholar 

  • Campbell L, Verburg P, Dixon DG, Hecky RE (2008) Mercury biomagnification in the food web of Lake Tanganyika (Tanzania East Africa). Sci Total Environ 402:184–191

    CAS  Google Scholar 

  • Cardoso PG, Sousa E, Matos P, Henriques B, Pereira E, Duarte AC, Pardal MA (2013) Impact of mercury contamination on the population dynamics of Peringia ulvae (Gastropoda): implications on metal transfer through the trophic web. Estuar Coast Shelf Sci 129:189–197

    CAS  Google Scholar 

  • Chakraborty P, Babu PVR, Vudamala K, Ramteke D, Chennuri K (2014) Mercury speciation in coastal sediments from the central east coast of India by modified BCR method. Mar Pollut Bull 81:282–288

    CAS  Google Scholar 

  • Chatziargyriou V, Dailianis S (2010) The role of selenium-dependent glutathione peroxidase (Se-GPx) against oxidative and genotoxic effects of mercury in haemocytes of mussel Mytilus galloprovincialis (Lmk). Toxicol in Vitro 24:1363–1372

    CAS  Google Scholar 

  • Chin TS, Chen SC (1993) Bioaccumulation and distribution of mercury in the hard clam Meretrix lusoria (Bivalvia:Veneidae). Comp Biochem Physiol C 106(1):131–139

    CAS  Google Scholar 

  • Conti ME, Cecchetti G (2003) A biomonitoring study: trace metals in algae and molluscs from Tyrrhenian coastal areas. Environ Res 93:99–112

    CAS  Google Scholar 

  • Das S, Sahu BK (2002) Ecological implication of mercury contaminated waters of Rushikulya estuary along east coast of India. In: Kumar A (ed) Ecology of polluted waters, vol II. A P H, New Delhi, pp 899–924

    Google Scholar 

  • Dious SRJ, Kasinathan R (1992) Concentrations of Fe Mn Zn and Cu in Cephalopod Sepiella inermis (Mollusc: Decapoda). Indian J Geo-Mar Sci 21:224–225

    CAS  Google Scholar 

  • Dos-Santos KC, Martinez CB (2014) Genotoxic and biochemical effects of atrazine and Roundup® alone and in combination on the Asian clam Corbicula fluminea. Ecotoxicol Environ Saf 100:7–14

    CAS  Google Scholar 

  • Duchemin MB, Auffret M, Wessel N, Fortier M, Morin Y, Pellerin J, Fournier M (2008) Multiple experimental approaches of immunotoxic effects of mercury chloride in the blue mussel Mytilus edulis through in vivo in tubo and in vitro exposures. Environ Pollut 153:416–423

    CAS  Google Scholar 

  • Fossi MC, Lari L, Casini S, Mattei N, Savelli C, Sanchez-Hernandez JC, Castellani S, Depledge M, Bamber S, Walker C, Savva D, Sparagano O (1996) Biochemical and genotoxic biomarkers in the Mediterranean crab Carcinus aestuarii experimentally exposed to polychlorobiphenyls benzopyrene and methyl-mercury. Mar Environ Res 42:29–32

    CAS  Google Scholar 

  • Fournier M, Pellerin J, Clermont Y, Morin Y, Brousseau P (2001) Effects of in vivo exposure of Mya arenaria to organic and inorganic mercury on phagocytic activity of hemocytes. Toxicology 161(3):201–211

    CAS  Google Scholar 

  • Frenzilli G, Nigro M, Lyons BP (2009) The Comet assay for the evaluation of genotoxic impact in aquatic environments. Mutat Res 681(1):80–92

    CAS  Google Scholar 

  • Gačić Z, Kolarević S, Sunjog K, Kračun-Kolarević M, Paunović M, Knežević-Vukčević J, Vuković-Gačić B (2014) The impact of in vivo and in vitro exposure to base analogue 5-FU on the level of DNA damage in haemocytes of freshwater mussels Unio pictorum and Unio tumidus. Environ Pollut 191:145–150

    Google Scholar 

  • Gagnaire B, Thomas-Guyon H, Renault T (2004) In vitro effects of cadmium and mercury on Pacific oyster Crassostrea gigas (Thunberg) haemocytes. Fish Shellfish Immunol 16(4):501–512

    CAS  Google Scholar 

  • Galloway TS, Depledge MH (2001) Immunotoxicity in invertebrates measurements and ecotoxicological relevance. Ecotoxicology 10:5–23

    CAS  Google Scholar 

  • Galloway T, Handy R (2003) Immunotoxicity of organophosphorous pesticides. Ecotoxicology 12:345–363

    CAS  Google Scholar 

  • Geret F, Jouan A, Turpin V, Bebianno MJ, Cosson RP (2002) Influence of metal exposure on metallothionein synthesis and lipid peroxidation in two bivalve mollusks: the oyster (Crassostrea gigas) and the mussel (Mytilus edulis). Aquat Living Resour 15(1):61–66

    Google Scholar 

  • Giani M, Rampazzo F, Berto D, Maggi C, Mao A, Horvat M, Emili A, Covelli S (2012) Bioaccumulation of mercury in reared and wild Ruditapes philippinarum of a Mediterranean lagoon. Estuar Coast Shelf Sci 113:116–125

    CAS  Google Scholar 

  • Giordano R, Arata P, Ciaralli L, Rinaldi S, Giani M, Cicero AM, Costantini S (1991) Heavy metals in mussels and fish from Italian coastal waters. Mar Pollut Bull 22(1):10–14

    CAS  Google Scholar 

  • Goldman LR, Shannon MW (2001) American Academy of Pediatrics Committee on Environmental Health Technical report: mercury in the environment: implications for pediatricians. Pediatrics 108(1):197–205

    CAS  Google Scholar 

  • Gouveia GR, Marques DS, Cruz BP, Geracitano LA, Nery LE, Trindade GS (2005) Antioxidant defenses and DNA damage induced by UV-A and UV-B radiation in the crab Chasmagnathus granulata (Decapoda Brachyura). Photochem Photobiol 81(2):398–403

    CAS  Google Scholar 

  • Grasshoff K, Ehrhardt M, Kremling K (eds) (1983) Methods of sea water analysis. Verlag Chemie, Weinheim

    Google Scholar 

  • Guidi P, Frenzilli G, Benedetti M, Bernardeschi M, Falleni A, Fattorini D, Regoli F, Scarcelli V, Nigro M (2010) Antioxidant genotoxic and lysosomal biomarkers in the fresh water bivalve (Unio pictorum) transplanted in a metal polluted river basin. Aquat Toxicol 100:75–83

    CAS  Google Scholar 

  • Gundacker C (2000) Comparison of heavy metal bioaccumulation in freshwater molluscs of urban river habitats in Vienna. Environ Pollut 110:61–71

    CAS  Google Scholar 

  • Hook SE, Lee RF (2004) Genotoxicant induced DNA damage and repair in early and late developmental stages of the grass shrimp Paleomonetes pugio embryo as measured by the comet assay. Aquat Toxicol 66:1–14

    CAS  Google Scholar 

  • Hornung H, Raviv D, Krumgalz BS (1981) The occurrence of mercury in marine algae and some gastropod molluscs of the Mediterranean shoreline of Israel. Mar Pollut Bull 12:387–390

    CAS  Google Scholar 

  • Hornung H, Krumgalz BS, Cohen Y (1984) Mercury pollution in sediments benthic organisms and in shore fishes of Haifa Bay Israel. Mar Environ Res 12:191–208

    CAS  Google Scholar 

  • Itziou A, Dimitriadis VK (2011) Introduction of the land snail Eobania vermiculata as a bioindicator organism of terrestrial pollution using a battery of biomarkers. Sci Total Environ 409:1181–1192

    CAS  Google Scholar 

  • Jaysankar D, Ramaiah N, Mesquita A, Verlekar XN (2003) Tolerance to various toxicants by marine bacteria highly resistant to mercury. Mar Biotechnol 5:185–193

    Google Scholar 

  • Jha AN (2008) Ecotoxicological applications and significance of the comet assay. Mutagenesis 23(3):207–221

    CAS  Google Scholar 

  • Jose S, Jayesh P, Mohandas A, Philip R, Bright Singh IS (2011) Application of primary haemocyte culture of Penaeus monodon in the assessment of cytotoxicity and genotoxicity of heavy metals and pesticide. Mar Environ Res 71:169–177

    CAS  Google Scholar 

  • Kaladharan P, Pillai VK, Nandakumar A, Krishnakumar PK (1999) Mercury in seawater along the west coast of India. Indian J Mar Sci 28:338–340

    CAS  Google Scholar 

  • Karunasagar D, Balarama Krishna MV, Anjaneyulu Y, Arunachalam J (2006) Studies of mercury pollution in a lake due to a thermometer factory situated in a tourist resort: Kodaikanal India. Environ Pollut 143(1):153–158

    CAS  Google Scholar 

  • Kidd KA, Muir DCG, Evans MS, Wang X, Whittle M, Swanson HK, Johnston T, Guildford S (2012) Biomagnification of mercury through lake trout (Salvelinus namaycush) food webs of lakes with different physical chemical and biological characteristics. Sci Total Environ 438:135–143

    CAS  Google Scholar 

  • Kljakovic-Gaspic Z, Odzak N, Ujevic I, Zvonaric T, Horvat M, Baric A (2006) Biomonitoring of mercury in polluted coastal area using transplanted mussels. Sci Total Environ 368(1):199–209

    CAS  Google Scholar 

  • Kolarević S, Knežević-Vukčević J, Paunović M, Kračun M, Vasiljević B, Tomović J, Vuković-Gačić B, Gačić Z (2013) Monitoring of DNA damage in haemocytes of freshwater mussel Sinanodonta woodiana sampled from the Velika Morava River in Serbia with the comet assay. Chemosphere 93(2):243–251

    Google Scholar 

  • Kraemer LD, Evans D, Dillon PJ (2013) Temporal and spatial variation in Hg accumulation in zebra mussels (Dreissena polymorpha): possible influences of DOC and diet. Ecotoxicol Environ Saf 91:71–78

    CAS  Google Scholar 

  • Krishnakumar PK, Bhat GS (1998) Heavy metal distribution in the biotic and abiotic matrices along Karnataka coast west coast of India. Indian J Mar Sci 27:201–205

    CAS  Google Scholar 

  • Kwon SY, McIntyre PB, Flecker AS, Campbell L (2012) Mercury biomagnification in the food web of a neotropical stream. Sci Total Environ 417:92–97

    Google Scholar 

  • Lain S, Hollick JJ, Campbell J, Staples OD, Higgins M, Aoubala M, McCarthy A, Appleyard V, Murray KE, Baker L, Thompson A, Mathers J, Holland SJ, Stark MJR, Pass G, Woods J, Lane DP, Westwood NJ (2008) Discovery in vivo activity and mechanism of action of a small-molecule p53 activator. Cancer Cell 13:454–463

    CAS  Google Scholar 

  • Lalancette A, Morin Y, Measures L, Fournier M (2003) Contrasting changes of sensitivity by lymphocytes and neutrophils to mercury in developing grey seals. Dev Comp Immunol 27:735–747

    CAS  Google Scholar 

  • Lee RF, Steinert S (2003) Use of the single cell gel electrophoresis/comet assay for detecting DNA damage in aquatic (marine and freshwater) animals. Mutat Res 544:43–64

    CAS  Google Scholar 

  • Lee R, Kim GB, Maruya KA, Steinert SA, Oshima Y (2000) DNA strand breaks (comet assay) and embryo development effects in grass shrimp (Palaemonetes pugio) embryos after exposure to genotoxicants. Mar Environ Res 50:553–557

    CAS  Google Scholar 

  • Liu F, Wang WX (2014) Differential influences of Cu and Zn chronic exposure on Cd and Hg bioaccumulation in an estuarine oyster. Aquat Toxicol 148:204–210

    CAS  Google Scholar 

  • Low KW, Sin YM (1996) In vivo and in vitro effects of mercuric chloride and sodium selenite on some non-specific immune responses of blue gourami Trichogaster trichopterus (Pallus). Fish Shellfish Immunol 6(5):351–362

    Google Scholar 

  • Maffei F, Carbone F, Cantelli-Forti G, Buschini A, Poli P, Rossi C, Marabini L, Radice S, Chiesara E, Hrelia P (2009) Drinking water quality: an in vitro approach for the assessment of cytotoxic and genotoxic load in water sampled along distribution system. Environ Int 35:1053–1061

    CAS  Google Scholar 

  • Magesh NS, Chandrasekar N, Vetha Roy D (2011) Spatial analysis of trace element contamination in sediments of Tamiraparani estuary southeast coast of India. Estuar Coast Shelf Sci 92:618–628

    CAS  Google Scholar 

  • Mago C (2003) India may become hot spot for mercury poisoning the times of India Mumbai February 4 (http://timesofindiai.ndiatimes.com/india/India-may-become-hot-spot-for-mercury-poisoning-UN/articleshow/36391661.cms)

  • Menon JS, Mahajan SV (2013) Mercury accumulation in different tissues of fish from Ulhas River estuary and Thane Creek and the pattern of fish consumption among fish-eaters. Indian J Geo-Mar Sci 42(6):812–816

    Google Scholar 

  • Migliore L, Cocchi L, Nesti C, Sabbioni E (1999) Micronuclei assay and FISH analysis in human lymphocyte treated with six metal salts. Environ Mol Mutagen 34:279–284

    CAS  Google Scholar 

  • Mishra S, Bhalke S, Saradhi IV, Suseela B, Tripathi RM, Pandit GG, Puranik VD (2007) Trace metals and organometals in selected marine species and preliminary risk assessment to human beings in Thane Creek area Mumbai. Chemosphere 69(6):972–978

    CAS  Google Scholar 

  • Mitchelmore CL, Birmelin C, Chipman JK, Livingstone DR (1998) Evidence for cytochrome P-450 catalysis and free radical involvement in the production of DNA strand breaks by benzo[a]pyrene and nitroaromatics in mussel (Mytilus edulis L) digestive gland cells. Aquat Toxicol 41:193–212

    CAS  Google Scholar 

  • Monteiro V, Cavalcante DGSM, Viléla MBFA, Sofia SH, Martinez CBR (2011) In vivo and in vitro exposures for the evaluation of the genotoxic effects of lead on the Neotropical freshwater fish Prochilodus lineatus. Aquat Toxicol 104:291–298

    CAS  Google Scholar 

  • Moriarty F, French MC (1977) Mercury in waterways that drain into the wash in Eastern England. Water Res 11:367–372

    CAS  Google Scholar 

  • Navarro CD, Martinez CB (2014) Effects of the surfactant polyoxyethylene amine (POEA) on genotoxic, biochemical and physiological parameters of the freshwater teleost Prochilodus lineatus. Comp Biochem Physiol C 165:83–90

    CAS  Google Scholar 

  • Noel L, Testu C, Chafey C, Velge P, Guérin T (2011) Contamination levels for lead cadmium and mercury in marine gastropods echinoderms and tunicates. Food Control 22(3–4):433–437

    CAS  Google Scholar 

  • Nogueira PR, Lourenço J, Mendo S, Rotchell JM (2006) Mutation analysis of RAS gene in the liver of European eel (Anguilla anguilla L) exposed to benzo[a]pyrene. Mar Pollut Bull 52:1611–1616

    CAS  Google Scholar 

  • Pacyna E, Pacyna J, Steenhuisen F, Wilson S (2006) Global anthropogenic mercury emission inventory for 2000. Atmos Environ 40:4048–4063

    CAS  Google Scholar 

  • Panda KK, Lenka M, Panda BB (1990) Monitoring and assessment of mercury pollution in the vicinity of a chloralkali plant. I. Distribution availability and genotoxicity of sediment mercury in the Rushikulya estuary India. Sci Total Environ 96:281–296

    CAS  Google Scholar 

  • Pandeswara SL, Yallapragada PR (2000) Tolerance accumulation and depuration in an intertidal gastropod Turbo intercostalis exposed to cadmium. Mar Environ Res 50:104–105

    Google Scholar 

  • Pandit GG, Jha SK, Tripathi RM, Krishnamoorthy TM (1997) Intake of methyl mercury by the population of Mumbai India. Sci Total Environ 205:267–270

    CAS  Google Scholar 

  • Pellegri V, Gorbi G, Buschini A (2014) Comet assay on Daphnia magna in eco-genotoxicity testing. Aquat Toxicol 155:261–268

    CAS  Google Scholar 

  • Pellisso SC, Munoz MJ, Carballo M, Sanchez-Vizcaino JM (2008) Determination of the immunotoxic potential of heavy metals on the functional activity of bottlenose dolphin leukocytes in vitro. Vet Immunol Immunopathol 121:189–198

    Google Scholar 

  • Pereira CSA, Guilherme SIAG, Barroso CMM, Verschaeve L, Pacheco MG, Mendo SALV (2009) Evaluation of DNA damage induced by environmental exposure to mercury in Liza aurata using the Comet assay. Arch Environ Contam Toxicol 58:112–122

    Google Scholar 

  • Pickhardt PC, Folt CL, Chen CY, Klaue B, Blum JD (2005) Impacts of zooplankton composition and algal enrichment on the accumulation of mercury in an experimental freshwater food web. Sci Total Environ 339:89–101

    CAS  Google Scholar 

  • Pisoni M, Cogotzi L, Frigeri A, Corsi I, Bonacci S, Iacocca A, Lancini L, Mastrototaro F, Focardi S, Svelto M (2004) DNA adducts benzo(a)pyrene monooxygenase activity and lysosomal membrane stability in Mytilus galloprovincialis from different areas in Taranto coastal waters (Italy). Environ Res 96(2):63–175

    Google Scholar 

  • Pytharopoulou S, Kournoutou GG, Leotsinidis M, Georgiou CD, Kalpaxis DL (2013) Dysfunctions of the translational machinery in digestive glands of mussels exposed to mercury ions. Aquat Toxicol 134–135:23–33

    Google Scholar 

  • Rajalekshmi P, Mohandas A (1993) Effect of heavy metals on tissue glycogen levels in the freshwater mussel Lamellidens corrianus (Lea). Sci Total Environ 134:617–630

    Google Scholar 

  • Rajathy S (1997) Mercury in water sediment and in some estuarine organisms of the Ennore Estuary Madras Tamil Nadu. J Mar Biol Assoc India 39:174–177

    Google Scholar 

  • Ram A, Rokade MA, Borole DV, Zingde MD (2003) Mercury in sediments of Ulhas estuary. Mar Pollut Bull 46:846–857

    CAS  Google Scholar 

  • Ram A, Borole DV, Rokade MA, Zingde MD (2009a) Diagenesis and bioavailability of mercury in the contaminated sediments of Ulhas estuary India. Mar Pollut Bull 58:1685–1693

    CAS  Google Scholar 

  • Ram A, Rokade MA, Zingde MD (2009b) Mercury enrichment in sediments of Amba estuary. Indian J Mar Sci 38(1):89–96

    CAS  Google Scholar 

  • Ramaiah N, De J (2003) Unusual rise in mercury-resistant bacteria in coastal environs. Microb Ecol 45:44–454

    Google Scholar 

  • Rank J, Jensen K (2003) Comet assay on gill cells and hemocytes from the blue mussel Mytilus edulis. Ecotoxicol Environ Saf 54:323–329

    CAS  Google Scholar 

  • Sanzgiry S, Mesquita A, Kureishy TW (1988) Total mercury in water sediments and animals along the Indian coast. Mar Pollut Bull 19(7):339–343

    CAS  Google Scholar 

  • Sarkar SK, Francisković-Bilinski S, Bhattacharya A, Saha M, Bilinski H (2004) Levels of elements in the surficial estuarine sediments of the Hugli River northeast India and their environmental implications. Environ Int 30:1089–1098

    Google Scholar 

  • Sarkar A, Gaitonde DCS, Sarkar A, Vashistha D, D’Silva C, Dalal SG (2008) Evaluation of impairment if DNA integrity in marine gastropods (Cronia contracta) as a biomarker of genotoxic contaminants in coastal water around Goa West coast of India. Ecotoxicol Environ Saf 71(2):473–482

    CAS  Google Scholar 

  • Sarkar A, Vashistha D, Gupta N, Malik K, Gaitonde DCS (2011) Measurement of DNA integrity in marine gastropods as biomarker of geno- toxicity environmental pollution: ecological impacts In: Bhattacharya B Ghosh A Majumdar SK (eds) Health Issues and Management Institute of Ecotoxicology and Environmental Sciences and Mudrakar, pp 108–112

  • Sarkar A, Bhagat J, Ingole B, Markad V, Rao DP (2013) Genotoxicity of cadmium chloride in marine gastropod Nerita chamaeleon using comet assay and alkaline unwinding assay. In: Tchounwou PB (ed) Environ Toxicol, John Wiley & Sons

  • Sarkar A, Bhagat J, Sarkar S (2014) Evaluation of impairment of DNA in marine gastropod, Morula granulata as a biomarker of marine pollution. Ecotoxicol Environ Safe 106:253–261

  • Sauve S, Brousseau P, Pellerin J, Morin Y, Senécal L, Goudreau P, Fournier M (2002) Phagocytic activity of marine and freshwater bivalves: in vitro exposure of hemocytes to metals (Ag Cd Hg and Zn). Aquat Toxicol 58:189–200

    CAS  Google Scholar 

  • Scarpato R, Barale R, Bertelli F, Di Marino F, D’Attilio T, Migliore L (1992) Genotoxic effects in marine mussel exposed to organic mercury. Mutat Res Genet Toxicol Environ Mutagen 271(2):164

    Google Scholar 

  • Selgrade MK (1999) Use of immunotoxicity data in health risk assessments: uncertainties and research to improve the process. Toxicology 133:59–72

    CAS  Google Scholar 

  • Selgrade MK (2005) Biomarkers of effects: the immune system. J Biochem Mol Toxicol 19:177–179

    CAS  Google Scholar 

  • Senger MR, Rico EP, de Bem AM, Frazzon AP, Dias RD, Bogo MR, Bonan CD (2006) Exposure to Hg2 and Pb2 changes NTPDase and ecto-5′-nucleotidase activities in central nervous system of zebrafish (Danio rerio). Toxicology 226:229–237

    CAS  Google Scholar 

  • Shaw BP, Sahu A, Chaudhari SB, Panigrahi AK (1988) Mercury in the Rushikulya river estuary. Mar Pollut Bull 19:233–234

    CAS  Google Scholar 

  • Shaw JP, Large T, Chipman JK, Livingstone DR, Peters LD (2000) Seasonal variation in mussel Mytilus edulis digestive gland cytochrome P4501A- and 2E-immunoidentified protein levels and DNA strand breaks (comet assay). Mar Environ Res 50:405–409

    CAS  Google Scholar 

  • Sheir SK, Handy RD, Galloway TS (2010) Tissue injury and cellular immune responses to mercuric chloride exposure in the common mussel Mytilus edulis: modulation by lipopolysaccharide. Ecotoxicol Environ Saf 73:1338–1344

    CAS  Google Scholar 

  • Singbal SYS, Sanzgiri S, Gupta RS (1978) Total mercury concentrations in the Arabian sea waters off the Indian coast. Indian J Mar Sci 7:124–126

    CAS  Google Scholar 

  • Singh NP, McCoy MT, Tice RR, Schneider EL (1988) A simple technique for quantitation of low levels of DNA damage in individual cells. Exp Cell Res 175:184–191

    CAS  Google Scholar 

  • Siu WHL, Cao J, Jack RW, Wu RSS, Richardson BJ, Xu L, Lam PKS (2004) Application of the comet and micronucleus assays to the detection of B[a]P genotoxicity in haemocytes of the green-lipped mussel (Perna viridis). Aquat Toxicol 66:381–392

    CAS  Google Scholar 

  • Soto DX, Roig R, Gacia E, Catalan J (2011) Differential accumulation of mercury and other trace metals in the food web components of a reservoir impacted by a chlor-alkali plant (Flix Ebro River Spain): implications for biomonitoring. Environ Pollut 159(6):1481–1489

    CAS  Google Scholar 

  • Spada L, Annicchiarico C, Cardellicchio N, Giandomenico S, Di Leo A (2012) Mercury and methylmercury concentrations in Mediterranean seafood and surface sediments intake evaluation and risk for consumers. Int J Hyg Environ Health 215:418–426

    CAS  Google Scholar 

  • Subba Rao NV, Dey A, Barua S (ed) (1992) Estuarine and marine molluscs fauna of West Bengal. Part 9 (State fauna Series 3) Pub: Zoological Survey of India Calcutta, pp 129

  • Sunderland EM, Krabbenhoft DP, Moreau JW, Strode SA, Landing WM (2009) Mercury sources distribution and bioavailability in the North Pacific Ocean: insights from data and models. Glob Biogeochem Cycles 23, GB2010

    Google Scholar 

  • Taddei F, Scarcelli V, Frenzilli G, Nigro M (2001) Genotoxic hazard of pollutants in cetaceans: DNA damage and repair evaluated in the bottlenose dolphin (Tursiops truncatus) by the Comet assay. Mar Pollut Bull 42:324–328

  • Tessier L, Vaillancourt G, Pazdernik L (1994) Comparative study of the cadmium and mercury kinetics between the short-lived gastropod Viviparus georgianus (Lea) and pelecypod Elliptio complanata (Lightfoot) under laboratory conditions. Environ Pollut 85:271–282

    CAS  Google Scholar 

  • Tran D, Moody JA, Fisher AS, Foulkes ME, Jha AN (2007) Protective effects of selenium on mercury-induced DNA damage in mussel haemocytes. Aquat Toxicol 84:11–18

    CAS  Google Scholar 

  • Tsuzuki K, Sugiyama M, Haramaki N (1994) DNA single-strand breaks and cytotoxicity induced by chromate (VI) cadmium (II) and mercury (II) in hydrogen peroxide-resistant cell lines. Environ Health Perspect 102:341–342

    CAS  Google Scholar 

  • Verlecar XN, Jena KB, Chainy GBN (2007) Biochemical markers of oxidative stress in Perna viridis exposed to mercury and temperature. Chem Biol Interact 167:219–226

    CAS  Google Scholar 

  • Verlecar XN, Jena KB, Chainy GBN (2008) Modulation of antioxidant defences in digestive gland of Perna viridis (L) on mercury exposures. Chemosphere 71:1977–1985

    CAS  Google Scholar 

  • Verlecar XN, Das PB, Jena K, Maharana D, Desai SR (2012) Antioxidant responses in Mesopodopsis zeylanica at varying salinity to detect mercury influence in culture ponds. Turk J Biol 36:711–718

    CAS  Google Scholar 

  • Vignardi CP, Hasue FM, Sartório PV, Cardoso CM, Machado AS, Passos MJ, Santos TC, Nucci JM, Hewer TL, Watanabe IS, Gomes V, Phan NV (2015) Genotoxicity, potential cytotoxicity and cell uptake of titanium dioxide nanoparticles in the marine fish Trachinotus carolinus (Linnaeus, 1766). Aquat Toxicol 158:218–229

    CAS  Google Scholar 

  • Voccia I, Krzystyniak K, Dunier M, Flipo D, Fournier M (1994) In vitro mercury-related cytotoxicity and functional impairment of the immune cells of rainbow trout (Oncorhynchus mykiss). Aquat Toxicol 29:37–48

    CAS  Google Scholar 

  • Wang S, Hong H, Wang X (2005) Bioenergetic responses in green lipped mussels (Perna viridis) as indicators of pollution stress in Xiamen coastal waters China. Mar Pollut Bull 51(8–12):738–743

    CAS  Google Scholar 

  • Wilson JT, Pascoe PL, Parry JM, Dixon DR (1998) Evaluation of the comet assay as a method for the detection of DNA damage in the cells of a marine invertebrate Mytilus edulis L (Mollusca: Pelecypoda). Mutat Res Fundam Mol Mech Mutagen 399:87–95

    CAS  Google Scholar 

  • Woolhiser MR, Henry KS, Holsapple MP (2005) Ecoimmuntoxicology: state of science. In: Tryphonas H, Fournier M, Blakley B, Smits JEG, Brousseau P (eds) Investigative immunotoxicology. CRC Press Book, Boca Raton, Florida, pp 13–28

  • Yadav KK, Trivedi SP (2009) Chromosomal aberrations in a fish Channa punctata after in vivo exposure to three heavy metals. Mutat Res Genet Toxicol Environ Mutagen 678:7–12

    CAS  Google Scholar 

  • Yap CK, Tan SG, Ismail A, Omar H (2004) Allozyme polymorphisms and heavy metal levels in the green-lipped mussel Perna viridis (Linnaeus) collected from contaminated and uncontaminated sites in Malaysia. Environ Int 30:39–46

    CAS  Google Scholar 

  • Yawei W, Lina L, Jianbo S, Guibin J (2005) Chemometrics methods for the investigation of methylmercury and total mercury contamination in mollusks samples collected from coastal sites along the Chinese Bohai Sea. Environ Pollut 135:457–467

    Google Scholar 

  • Zingde MD, Desai BN (1981) Mercury in Thana Creek Bombay Harbour. Mar Pollut Bull 12:237–241

    CAS  Google Scholar 

Download references

Acknowledgments

A part of the abstract was presented at the International Conference on Fisheries and Aquaculture (ICFA-2014) in Colombo, Sri Lanka on 09th and 10th September 2014. Authors would like to pay their deep sense of gratitude to the Director, CSIR-NIO for his whole-hearted cooperation and keen interest to carry out the work in this institute. They are indebted to Department of Biotechnology, New Delhi for providing fellowship to Mr. Jacky Bhagat. They also like to thank Analia Mesquita for her help in measurement of mercury. They also extend their thanks to the Council of Scientific and Industrial Research (CSIR) for providing the financial support and infrastructural facilities for Project No. PSC0206. This is contribution No 5714 of CSIR, NIO, Goa.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Bhagat.

Additional information

Responsible editor: Cinta Porte

Capsule

We have reported concentration-dependent increase in tail DNA and olive tail moment measured by comet assay in marine gastropod Planaxis sulcatus exposed to in vivo and in vitro to HgCl2

Highlights

• An approach to evaluate genotoxicity of HgCl2 in marine gastropod was presented

• In vivo and in vitro effects of HgCl2in gill cells of gastropod was evaluated using comet assay

• Concentration dependent increase in tail DNA and olive tail moment is reported in exposed gastropods

• HgCl2 was found to be genotoxic to marine gastropod Planaxis sulcatus

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhagat, J., Ingole, B.S. Genotoxic potency of mercuric chloride in gill cells of marine gastropod Planaxis sulcatus using comet assay. Environ Sci Pollut Res 22, 10758–10768 (2015). https://doi.org/10.1007/s11356-015-4263-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-015-4263-7

Keywords

Navigation