Skip to main content

Effect of solution properties, competing ligands, and complexing metal on sorption of tetracyclines on Al-based drinking water treatment residuals

Abstract

In the current batch study, we investigated the effect of solution properties, competing ligands (phosphate (P(V)) and sulfate), and complexing metal (calcium (Ca2+)) on tetracycline (TTC) and oxytetracycline (OTC) sorption by Al-based drinking water treatment residuals (Al-WTR). The sorption behavior for both TTC and OTC on Al-WTR was pH dependent. The sorption in absence of competing ligands and complexing metal increased with increasing pH up to circum-neutral pH and then decreased at higher pH. The presence of P(V) when added simultaneously had a significant negative effect (p < 0.001) on the sorption of TTC and OTC adsorbed by Al-WTR at higher TTC/OTC:P ratios. However, when P(V) was added after the equilibration of TTC and OTC by Al-WTR, the effect was minimal and insignificant (p > 0.1). The presence of sulfate had a minimal/negligible effect on the sorption of TCs by Al-WTR. A significant negative effect (p < 0.001) on the adsorption of TCs by Al-WTR was observed in the pH range below 5 and at higher TCs:Ca2+ ratios, probably due to TCs-Ca2+ complex formation. Fourier transform infrared (FTIR) analysis indicated the possibility of inner-sphere-type bonding by the functional groups of OTC/TTC on Al-WTR surface. Results from the batch sorption study indicate high affinity of Al-WTR for TCs in the pH range 4–8 (majorly encountered pH in the environment) in the presence of competing ligands and complexing metal.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Abbreviations

TCs:

Tetracyclines

TTC:

Tetracycline

OTC:

Oxytetracycline

CTC:

Chlortetracycline

WTRs:

Water treatment residuals

IS:

Ionic strength

SSR:

Sorbate/sorbent ratio

VAs:

Veterinary antibiotics

CAFOs:

Concentrated animal feeding operations

References

  • Aga DS (2008) Fate of pharmaceuticals in the environment and in water treatment systems. CRC, Boca Raton

    Google ScholarĀ 

  • Allen HK, Donato J, Wang HH, Cloud-Hansen KA, Davies J, Handelsman J (2010) Call of the wild: antibiotic resistance genes in natural environments. Nat Rev Microbiol 8(4):251–259. doi:10.1038/nrmicro2312

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Aristilde L, Marichal C, Miehe-Brendle J, Lanson B, Charlet L (2010) Interactions of oxytetracycline with a smectite clay: a spectroscopic study with molecular simulations. Environ Sci Technol 44(20). doi:10.1021/es102136y

  • Bao YY, Zhou QX, Wan Y, Yu QA, Xie XJ (2010) Effects of soil/solution ratios and cation types on adsorption and desorption of tetracycline in soils. Soil Sci Soc Am J 74(5):1553–1561. doi:10.2136/sssaj2009.0402

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Ben-Dor E, Banin A (1989) Determination of organic matter content in arid-zone soils using a simple ā€œloss-on-ignitionā€ method. Commun Soil Sci Plant Anal 20:1675–1695

    ArticleĀ  Google ScholarĀ 

  • Boyd SL, Boyd RJ, Bossonnette PW, Kerdaron DI, Aucoin NT (1995) A theoretical study of the effects of protonation and deprotonation on bond dissociation energies. J Am Chem Soc 117:8816–8822

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Caporale AG, Punamiya P, Pigna M, Violante A, Sarkar D (2013) Effect of particle size of drinking-water treatment residuals on the sorption of arsenic in the presence of competing ions. J Hazard Mater 260:644–651. doi:10.1016/j.jhazmat.2013.06.023

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Chen W-R, Huang C-H (2010) Adsorption and transformation of tetracycline antibiotics with aluminum oxide. Chemosphere 79(8):779–785

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Datta R, Das P, Smith S, Punamiya P, Ramanathan DM, Reddy R, Sarkar D (2013) Phytoremediation potential of vetiver grass Chrysopogon zizanioides (L.) for tetracycline. Int J Phytoremediation 15(4):343–351. doi:10.1080/15226514.2012.702803

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Elliott HA, Dempsey BA (1991) Agronomic effects of land application of water treatment sludges. J AWWA 83:126–131

    CASĀ  Google ScholarĀ 

  • Figueroa RA, MacKay AA (2005) Sorption of oxytetracycline to iron oxides and iron oxide-rich soils. Environ Sci Technol 39(17):6664–6671. doi:10.1021/es048044l

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Figueroa RA, Leonard A, MacKay AA (2004) Modeling tetracycline antibiotic sorption to clays. Environ Sci Technol 38(2):476–483. doi:10.1021/es0342087

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Fritz JW, Zuo Y (2007) Simultaneous determination of tetracycline, oxytetracycline, and 4-epitetracycline in milk by high-performance liquid chromatography. Food Chem 105(3):1297–1301. doi:10.1016/j.foodchem.2007.03.047

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Gu C, Karthikeyan K (2005) Interaction of tetracycline with aluminum and iron hydrous oxides. Environ Sci Technol 39(8):2660–2667

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Hanlon EA, Gonzalez JS, Bartos JM (1997a) Soil pH (1:2v/v). IFAS extension soil testing laboratory (ESTL) and analytical research laboratory (ARL) chemical procedures and training manual. Fl. Coop. Ext. Ser. Cir. 812. Univ. of Florida, Gainesville, p 15

    Google ScholarĀ 

  • Hanlon EA, Gonzalez JS, Bartos JM (1997b) Electrical conductivity. IFAS extension soil testing laboratory (ESTL) and analytical research laboratory (ARL) chemical procedures and training manual. Fl. Coop. Ext. Ser. Cir. 812. Univ. of Florida, Gainesville, p 24

    Google ScholarĀ 

  • Ippolito J, Barbarick K, Elliott H (2011) Drinking water treatment residuals: a review of recent uses. J Environ Qual 40(1):1–12. doi:10.2134/jeq2010.0242

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Ji L, Chen W, Duan L, Zhu D (2009) Mechanisms for strong adsorption of tetracycline to carbon nanotubes: a comparative study using activated carbon and graphite as adsorbents. Environ Sci Technol 43(7):2322–2327. doi:10.1021/es803268b

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Jia DA, Zhou DM, Wang YJ, Zhu HW, Chen JL (2008) Adsorption and cosorption of Cu (II) and tetracycline on two soils with different characteristics. Geoderma 146:224–23

  • Kang J, Liu HJ, Zheng YM, Qu JH, Chen JP (2011) Application of nuclear magnetic resonance spectroscopy, Fourier transform infrared spectroscopy, UV-Visible spectroscopy and kinetic modeling for elucidation of adsorption chemistry in uptake of tetracycline by zeolite beta. J Colloid Interface Sci 354(1):261–267. doi:10.1016/j.jcis.2010.10.065

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Kemper N (2008) Veterinary antibiotics in the aquatic and terrestrial environment. Ecol Indic 8(1):1–13. doi:10.1016/j.ecolind.2007.06.002

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Kulshrestha P, Giese R, Aga D (2004) Investigating the molecular interactions of oxytetracycline in clay and organic matter: insights on factors affecting its mobility in soil. Environ Sci Technol 38(15):4097–4105. doi:10.1021/es034856q

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Kümmerer K (2009) Antibiotics in the aquatic environment—a review—part I. Chemosphere 75(4):417–434. doi:10.1016/j.chemosphere.2008.11.086

    ArticleĀ  Google ScholarĀ 

  • Makris K, El-Shall H, Harris W, O'Connor G, Obreza T (2004a) Intraparticle phosphorus diffusion in a drinking water treatment residual at room temperature. J Colloid Interface Sci 277(2):417–423. doi:10.1016/j.jcis.2004.05.001

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Makris K, Harris W, O'Connor G, Obreza T (2004b) Phosphorus immobilization in micropores of drinking-water treatment residuals: Implications for long-term stability. Environ Sci Technol 38(24):6590–6596. doi:10.1021/es049161j

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Makris K, Harris W, O'Connor G, Obreza T, Elliott H, (2005) Physicochemical properties related to longterm phosphorus retention by drinking-water treatment residuals. Environ Sci Technol 39(11):4280–4289

  • Makris K, Sarkar D, Datta R (2006) Evaluating a drinking-water waste by-product as a novel sorbent for arsenic. Chemosphere 64(5):730–741. doi:10.1016/j.chemosphere.2005.11.054

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Nagar R, Sarkar D, Makris KC, Datta R (2010) Effect of solution chemistry on arsenic sorption by Fe- and Al-based drinking-water treatment residuals. Chemosphere 78(8):1028–1035. doi:10.1016/j.chemosphere.2009.11.034

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Netthisinghe AMP, Cook KL, Rice C, Gilfillen RA, Sistani KR (2013) Soil nutrients, bacteria populations, and veterinary pharmaceuticals across a backgrounding beef feedlot. J Environ Qual 42(2):532–544. doi:10.2134/jeq2012.0203

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Oberle K, Capdeville MJ, Berthe T, Budzinski H, Petit F (2012) Evidence for a complex relationship between antibiotics and antibiotic-resistant Escherichia coli: from medical center patients to a receiving environment. Environ Sci Technol 46(3):1859–1868. doi:10.1021/es203399h

    ArticleĀ  CASĀ  Google ScholarĀ 

  • O'Connor GA, Elliott HA, Lu R (2002) Characterizing water treatment residuals phosphorus retention. Soil Crop Sci Soc Fla Proc 61:67–73

    Google ScholarĀ 

  • Pei ZG, Shan XQ, Zhang SZ, Kong JJ, Wen B, Zhang J, Zheng LR, Xie YN, Janssens K (2011) Insight to ternary complexes of co-adsorption of norfloxacin and Cu(II) onto montmorillonite at different pH using EXAFS. J Hazard Mater 186(1):842–848. doi:10.1016/j.jhazmat.2010.11.076

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Pils J, Laird D (2007) Sorption of tetracycline and chlortetracycline on K- and Ca-saturated soil clays, humic substances, and clay-humic complexes. Environ Sci Technol 41(6):1928–1933. doi:10.1021/es062316y

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Punamiya P (2013) Green remediation of veterinary antibiotics in soil-water systems. Montclair State University, ProQuest, UMI Dissertations Publishing, 3607612

  • Punamiya P, Sarkar D, Rakshit S, Datta R (2013) Effectiveness of aluminum-based drinking water treatment residuals as a novel sorbent to remove tetracyclines from aqueous medium. J Environ Qual 42(5):1449–1459. doi:10.2134/jeq2013.03.0082

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Rakshit S, Punamiya P, Datta R, Sarkar D (2010) Sorption of oxytetracycline on magnetite-water interface. Geochim Cosmochim Acta 74(12):A846

    Google ScholarĀ 

  • Rakshit S, Elzinga EJ, Datta R, Sarkar D (2013a) In situ attenuated total reflectance Fourier-transform infrared study of oxytetracycline sorption on magnetite. J Environ Qual 42(3):822–827. doi:10.2134/jeq2012.0412

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Rakshit S, Sarkar D, Elzinga EJ, Punamiya P, Datta R (2013b) Mechanisms of ciprofloxacin removal by nano-sized magnetite. J Hazard Mater 246:221–226. doi:10.1016/j.jhazmat.2012.12.032

    ArticleĀ  Google ScholarĀ 

  • Rakshit, S., Sarkar, D., Elzinga, E., Punamiya, P., and Datta, R. (2014) Surface Complexation of Oxytetracycline by Magnetite: Effect of Solution Properties, Vadose Zone Journal, (February 2014, v. 13 (2) 147) , doi:10.2136/vzj2013.08.0147)

  • Sall J, Creighton L, Lehman A (2005) JMP start statistics, 8th edn. SAS Institute, Cary

    Google ScholarĀ 

  • Schmitt MO, Schneider S (2000) Spectroscopic investigation of complexation between various tetracyclines and Mg2+ or Ca2+. Physchemcomm (1-14). doi:10.1039/b005722n

  • ter Laak TL, Gebbink WA, Tolls J (2006) The effect of pH and ionic strength on the sorption of sulfachloropyridazine, tylosin, and oxytetracycline to soil. Environ Toxicol Chem 25(4):904–911. doi:10.1897/05-232r.1

    ArticleĀ  Google ScholarĀ 

  • Violante A (2013) Elucidating mechanisms of competitive sorption at the mineral/water interface. Adv Agron 118:111–176

    ArticleĀ  Google ScholarĀ 

  • Violante A, Ricciardella M, Pigna M (2003) Adsorption of heavy metals on mixed Fe–Al oxides in the absence or presence of organic ligands. Water Air Soil Pollut 145:289–306

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Violante A, Del Gaudio S, Pigna M, Pucci M, Amalfitano C (2008) Sorption and desorption of arsenate by soil minerals and soils in the presence of nutrients and organics. In: Huang Q, Huang PM, Violante A (eds) Soil mineral-microbe-organic interactions. Springer, Berlin, pp 39–69

    ChapterĀ  Google ScholarĀ 

  • Wang Y-J, Jia D-A, Sun R-J, Zhu H-W, Zhou D-M (2008) Adsorption and cosorption of tetracycline and copper(II) on montmorillonite as affected by solution pH. Environ Sci Technol 42(9):3254–3259. doi:10.1021/es702641a

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Watkinson AJ, Murby EJ, Kolpin DW, Costanzo SD (2009) The occurrence of antibiotics in an urban watershed: From wastewater to drinking water. Sci Total Environ 407(8):2711–2723. doi:10.1016/j.scitotenv.2008.11.059

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Yang Y, Zhao YQ, Babatunde AQ, Wang L, Ren YX, Han Y (2006) Characteristics and mechanisms of phosphate adsorption on dewatered alum sludge. Sep Purif Technol 51(2):193–200. doi:10.1016/j.seppur.2006.01.013

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Zaimes GN, Schultz RC (2002) Phosphorus in agricultural watersheds: a literature review. Iowa State University, Ames, Department of Forestry

  • Zhang D, Pan B, Wu M, Wang B, Zhang H, Peng H, Wu D, Ning P (2011) Adsorption of sulfamethoxazole on functionalized carbon nanotubes as affected by cations and anions. Environ Pollut 159(10):2616–2621. doi:10.1016/j.envpol.2011.05.036

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Zhang Y, Cai XY, Lang XM, Qiao XL, Li XH, Chen JW (2012) Insights into aquatic toxicities of the antibiotics oxytetracycline and ciprofloxacin in the presence of metal: complexation versus mixture. Environ Pollut 166:48–56. doi:10.1016/j.envpol.2012.03.009

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Zhao YP, Gu XY, Gao SX, Geng JJ, Wang XR (2012) Adsorption of tetracycline (TC) onto montmorillonite: cations and humic acid effects. Geoderma 183:12–18. doi:10.1016/j.geoderma.2012.03.004

    ArticleĀ  Google ScholarĀ 

  • Zhu J, Pigna M, Cozzolino V, Caporale AG, Violante A (2011) Sorption of arsenite and arsenate on ferrihydrite: effect of organic and inorganic ligands. J Hazard Mater 189:564–571

    ArticleĀ  CASĀ  Google ScholarĀ 

Download references

Acknowledgments

The authors would like to thank Montclair State University (MSU), Montclair, NJ, USA, for the graduate assistantship for the PhD student, analytical facilities, and the Center for Writing Excellence (CWE) for proofreading the manuscript. The Geological Society of America (GSA) and New Jersey Water Resources Research Institute–United States Geological Survey (NJWRRI-USGS) programs are acknowledged for student research grant awards.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dibyendu Sarkar.

Additional information

Responsible editor: Roland Kallenborn

Statement of novelty

The efficiency and potential of Al-based drinking water treatment residuals (Al-WTRs) as a novel and ā€œgreenā€ remediation sorbent was evaluated for the most widely used veterinary antibiotic group tetracyclines (TCs). The WTRs—apart from being available free-of-cost—has the distinct advantage of being ā€œgreenā€ because recycling gives a second life to this industrial waste by-product. Macroscopic and spectroscopic approaches were used to understand the interaction mechanisms of TCs with Al-WTR in presence and absence of competing ligands and complexing metal. Preliminary results indicate a strong potential for development of Al-WTRs as a ā€œgreenā€ amendment for in situ immobilization of tetracycline group of antibiotics in contaminated aquatic systems.

Highlights

• Al-WTR showed high sorption affinity for removal of TTC and OTC in the presence of competing ligands and complexing metal.

• A pH-dependent behavior was observed for all the treatments tested in the presence and absence of competing ligands and complexing metal.

• The capacity of P(V) to inhibit sorption was significant when added simultaneously and minimal when added after equilibrium minimal effect of sulfate, and cooperative effect of calcium on sorption of Al-WTR.

• ATR-FTIR spectroscopic data revealed that the interaction of OTC and TTC with Al-WTR surface is strong via inner-sphere-type bonding.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 100Ā kb)

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Punamiya, P., Sarkar, D., Rakshit, S. et al. Effect of solution properties, competing ligands, and complexing metal on sorption of tetracyclines on Al-based drinking water treatment residuals. Environ Sci Pollut Res 22, 7508–7518 (2015). https://doi.org/10.1007/s11356-015-4145-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-015-4145-z

Keywords

  • Tetracyclines
  • Sorption
  • Drinking water treatment residuals
  • Competing ligands
  • Complexing metal
  • Remediation