Skip to main content

Advertisement

Log in

Cytotoxicity of zinc nanoparticles fabricated by Justicia adhatoda L. on root tips of Allium cepa L.—a model approach

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Zinc nanoparticles were synthesized using aqueous leaf extract of Justicia adhatoda L. The characterization of nanoparticles was done by ultraviolet-visible (UV-vis) spectroscopy, Fourier transform infrared (FTIR) spectroscopy, atomic force microscopy (AFM), and high-resolution transmission electron microscopy (HR-TEM). The characteristic absorption peak of the UV spectrum was recorded at 379 nm. The FTIR data revealed the possible biomolecules involved in bioreduction and capping of zinc nanoparticles for efficient stabilization. AFM and HR-TEM images have shown that the size of zinc nanoparticles ranges from 55 to 83 nm and they are spherical in shape. The biogenic zinc nanoparticles were evaluated for their toxic effect on mitotic chromosomes of Allium cepa as a model system. Experiments were conducted in triplicate to assay the effect of 25, 50, 75, and 100 % of zinc nanoparticles on mitotic chromosomes at an interval of 6 h duration for 24 h. The investigation revealed that the mitotic index (MI) was decreased with increased concentration of zinc nanoparticles and exposure duration. The results revealed that zinc nanoparticles have induced abnormalities like anaphase bridge formation, diagonal anaphase, C-metaphase, sticky metaphase, laggards, and sticky anaphase at different percentages and times of exposure. It is evident from the observation that mitotic cell division becomes abortive at 100 % treatment of zinc nanoparticles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  • Albrecht MA, Evan CW, Raston CL (2006) Green chemistry and the health implication of nanoparticles. Green Chem 8:417–432

    Article  CAS  Google Scholar 

  • Becheri A, Durr M, Nastro PL, Baglioni P (2008) Synthesis and characterization of zinc oxide nanoparticles: application to textiles as UV-absorbers. J Nanoparticle Res 10:679–689

    Article  CAS  Google Scholar 

  • Bennett VH, Victoria WJ, Santos H (2006) Role of mitochondrial DNA in toxic responses to oxidative stress. DNA Repair (Amst) 5(2):145–152

    Article  Google Scholar 

  • Borboa L, Dela Torre C (1996) The genotoxicity of Zn(II) and Cd(II) in Allium cepa root meristematic cells. New Phytol 134:481–486

    Article  CAS  Google Scholar 

  • Brayner R, Ferrari-lliou R, Brivois DN, Benedetti MF, Fievet F (2006) Toxicological impact studies based on Escherichia coli bacteria in ultrafine ZnO nanoparticles colloidal medium. Nano Lett 6:866–870

    Article  CAS  Google Scholar 

  • Deysson G, Bournce GH, Danielli JF (1968) Antimitotic substances. In: International review of cytology (Ed.), Academic Press, New York and London. 24:99–148

  • Duan CQ, Wang HX (1995) Cytogenetical toxical effects of heavy metals on Vicia faba and inquires into the Vicia-micronucleus. Acta Bot Sin 37:14–24

    CAS  Google Scholar 

  • Fiskesjo G (1985) The Allium test as a standard environmental monitoring. Heredity 102:99–112

    Article  CAS  Google Scholar 

  • Franklin NM, Rogers NJ, Apte SC, Batley GE, Gadd GE, Casey PS (2007) Comparative toxicity of nanoparticulate ZnO, bulk ZnO, and ZnCl2 to freshwater micro alga Pseudokirchneriella subcapitata: the importance of particle solubility. Environ Sci Technol 41:8484–8490

    Article  CAS  Google Scholar 

  • Gokak IB, Taranath TC (2014a) Phytosynthesis of silver nanoparticles using leaf extract of Wattakaka volublis (L.F.) Stapf., and their antibacterial activity. Int J Sci Env Tech 3:93–99

    Google Scholar 

  • Gokak IB, Taranath TC (2014b) Cansjera rheedii J. F. Gmel. a medicinal plant-mediated synthesis of silver nanoparticles and their antibacterial activity. Int J Sci Eng Technol 3(3):293–296

    CAS  Google Scholar 

  • Grant WF (1982) Chromosome aberrations assays in Allium—a report of the U.S. Environmental Protection Agency Gene-Tox Program. Mut Res 99:273–291

    Article  CAS  Google Scholar 

  • Heinlaan M, Ivask A, Blinova I, Dubourguier HC, Kahru A (2008) Toxicity of nanosized and bulk ZnO, CuO and TiO2 to bacteria Vibrio fischeri and crustaceans Daphnia magna and Thamnocephalus platyurus. Chemosphere 71:1308–1316

    Article  CAS  Google Scholar 

  • Hideo T, Nobuo T (1990) Autopolyploid formation of Trichoderma reesei QM9414 by colchicine treatment. J Ferment Bioeng 69(1):51–53

    Article  Google Scholar 

  • Hulkoti NI, Taranath TC (2014) Biosynthesis of nanoparticles using microbes—a review. Colloids Surf B: Biointerfaces 121:474–483

    Article  CAS  Google Scholar 

  • Khodakovskaya M, Dervishi E, Mahmood M, Xu Y, Li Z, Watanabe F, Biris AS (2009) Carbon nanotubes are able to penetrate plant seed coat and dramatically affect seed germination and plant growth. ACS Nano 3:3221–3227

    Article  CAS  Google Scholar 

  • Kihlman BA (1974) Principle and method of their detection. In: Hollaender A (ed) Chemical mutagens. Plenum Press, New York, p 489

    Google Scholar 

  • Kong MH, Ma TH (1999) Genotoxicity of contaminated soil and shallow well water detected by plant bioassays. Mutat Res 426:221–228

    Article  CAS  Google Scholar 

  • Kumar A, Pandey AK, Singh SS, Shanker R, Dhawan A (2011a) Cellular uptake and mutagenic potential of metal oxide nanoparticles in bacterial cells. Chemosphere 83:1124–1132

    Article  CAS  Google Scholar 

  • Kumar A, Pandey AK, Singh SS, Shanker R, Dhawan A (2011b) Engineered ZnO and TiO2 nanoparticles induce oxidative stress and DNA damage leading to reduced viability of Escherichia coli. Free Radic Biol Med 51:1872–188

    Article  CAS  Google Scholar 

  • Kumari M, Mukherjee A, Chandrasekaran N (2009) Genotoxicity of silver nanoparticles in Allium cepa. Sci Total Environ 407:5243–5246

    Article  CAS  Google Scholar 

  • Kuriyama R, Sakai H (1974) Role of tubulin-SH group in polymerization to microtubules. J Biochem 76:651–654

    CAS  Google Scholar 

  • Lin D, Xing B (2008) Root uptake and phytotoxicity of ZnO nanoparticles. Environ Sci Technol 42:5580–5585

    Article  CAS  Google Scholar 

  • Lin WS, Xu Y, Huang CC, Ma YF, Shannon KB, Chen DR, Huang YW (2009) Toxicity of nano-and micro-sized ZnO particles in human lung epithelial cells. J Nanoparticle Res 11:25–39

    Article  CAS  Google Scholar 

  • Liu DH, Jiang WS, Wang CL (1996) Effect of Zn2+ on root growth, cell division and nucleoli of Allium cepa L. J Environ Sci 8:21–27

    CAS  Google Scholar 

  • Meulenkamp EA (1998) Synthesis and growth of ZnO nanoparticles. J Phys Chem B 102:5566–5572

    Article  CAS  Google Scholar 

  • Mousa M (1982) Mitoinhibition and chromosomal aberrations induced by some herbicide in root tips of A. cepa. Egypt J Genet Cytol 11:193–207

    Google Scholar 

  • Mukherjee A, Dhir H, Sharma A (1990) Interaction between essential elements—zinc and iron and metal pollutants—cadmium and lead on cell division and chromosome aberrations in Valhisneria spiralis L. Cytologia 55:405–410

    Article  CAS  Google Scholar 

  • Murphy MP (2009) How mitochondria produce reactive oxygen species. Biochem J 417:1–13

    Article  CAS  Google Scholar 

  • Naik RR, Stone MO (2005) Integrating biomimetics. Mat Today 8:18–26

    Article  CAS  Google Scholar 

  • Nam SH, Kim SW, An YJ (2013) No evidence of the genotoxic potential of gold, silver, zinc oxide and titanium dioxide nanoparticles in the SOS chromotest. J Appl Toxicol 33:1061–1069

    Article  CAS  Google Scholar 

  • Osterberg R, Persson D, Bjursell G (1984) The condensation of DNA by chromium (III) ions. J Biomol Struct Dyn 2:285–290

    Article  CAS  Google Scholar 

  • Rijstenbil JW, Poortvliet TCW (1992) Copper and zinc in estuarine water: chemical speciation in relation to bioavailability to the marine planktonic diatom Ditylum brightwellii. Environ Toxicol Chem 11:1615–1625

    Article  CAS  Google Scholar 

  • Sahi AN, Singh RN (1996) Fly-ash induced chromosomal aberrations in Allium cepa. Cytobios 86:23–28

    Google Scholar 

  • Serpone N, Dondi D, Albini A (2007) Inorganic and organic UV filters: their role and efficacy in sunscreens and suncare product. Inorg Chim Acta 360:794–802

    Article  CAS  Google Scholar 

  • Sharma V, Shukla RK, Saxena N, Parmar D, Das M, Dhawan A (2009) DNA damaging potential of zinc oxide nanoparticles in human epidermal cells. Toxicol Lett 185:211–218

    Article  CAS  Google Scholar 

  • Shaymurat T, Jianxiu G, Changshan X, Zhikun Y, Qing Z, Yuxue L, Yichun L (2011) Phytotoxic and genotoxic effects of ZnO nanoparticles on garlic (Allium sativumL.): a morphological study. Nanotoxicology 1–8

  • Shen CX, Zhang QF, Li J, Bi FC, Yao N (2010) Induction of programmed cell death in Arabidopsis and rice by single-wall carbon nanotubes. Am J Bot 97:1–8

    Article  Google Scholar 

  • Stampoulis D, Sinha SK, White JC (2009) Assay-dependent phytotoxicity of nanoparticles to plants. Environ Sci Technol 43:9473–9479

    Article  CAS  Google Scholar 

  • Von Rosen C (1954) Breaking of chromosome by the action of element of the periodical system and by some other principle. Hereditas 40:258–263

    Google Scholar 

  • Wang B, Feng W, Wang M, Wang TC, Gu YQ, Zhu MT, Ouyang H, Shi JW, Zhang F, Zhao YL (2008) Acute toxicological impact of nano- and submicro-scaled zinc oxide powder on healthy adult mice. J Nanoparticle Res 10:263–276

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank the Chairman, P.G. Department of Studies in Botany, Karnatak University, Dharwad, for providing necessary facilities and University Grant Commission, New Delhi, India, for financial assistance under the UGC- SAP-DRS-III program. The authors also thank USIC, K.U.D., for necessary instrument facility.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. C. Taranath.

Additional information

Responsible editor: Philippe Garrigues

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Taranath, T.C., Patil, B.N., Santosh, T.U. et al. Cytotoxicity of zinc nanoparticles fabricated by Justicia adhatoda L. on root tips of Allium cepa L.—a model approach. Environ Sci Pollut Res 22, 8611–8617 (2015). https://doi.org/10.1007/s11356-014-4043-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-014-4043-9

Keywords