Skip to main content

Advertisement

Log in

Impact of nanoparticles on human and environment: review of toxicity factors, exposures, control strategies, and future prospects

  • Review Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Nanotechnology has revolutionized the world through introduction of a unique class of materials and consumer products in many arenas. It has led to production of innovative materials and devices. Despite of their unique advantages and applications in domestic and industrial sectors, use of materials with dimensions in nanometers has raised the issue of safety for workers, consumers, and human environment. Because of their small size and other unique characteristics, nanoparticles have ability to harm human and wildlife by interacting through various mechanisms. We have reviewed the characteristics of nanoparticles which form the basis of their toxicity. This paper also reviews possible routes of exposure of nanoparticles to human body. Dermal contact, inhalation, and ingestion have been discussed in detail. As very limited data is available for long-term human exposures, there is a pressing need to develop the methods which can determine short and long-term effects of nanoparticles on human and environment. We also discuss in brief the strategies which can help to control human exposures to toxic nanoparticles. We have outlined the current status of toxicological studies dealing with nanoparticles, accomplishments, weaknesses, and future challenges.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Adam N, Schmitt C, Galceran J et al (2014) The chronic toxicity of ZnO nanoparticles and ZnCl2 to Daphnia magna and the use of different methods to assess nanoparticle aggregation and dissolution. Nanotoxicology 8:709–717. doi:10.3109/17435390.2013.822594

    CAS  Google Scholar 

  • Ahamed M (2011) Toxic response of nickel nanoparticles in human lung epithelial A549 cells. Toxicol In Vitro 25:930–936. doi:10.1016/j.tiv.2011.02.015

    CAS  Google Scholar 

  • Ahn J-M, Eom H-J, Yang X et al (2014) Comparative toxicity of silver nanoparticles on oxidative stress and DNA damage in the nematode, Caenorhabditis elegans. Chemosphere 108:343–352. doi:10.1016/j.chemosphere.2014.01.078

    CAS  Google Scholar 

  • Albanese A, Chan WCW (2011) Effect of gold nanoparticle aggregation on cell uptake and toxicity. ACS Nano 5:5478–5489. doi:10.1021/nn2007496

    CAS  Google Scholar 

  • Alexis F, Pridgen E, Molnar LK, Farokhzad OC Factors affecting the clearance and biodistribution of polymeric nanoparticles. Mol Pharm 5:505–15. doi: 10.1021/mp800051m

  • Al-Kattan A, Wichser A, Zuin S et al (2014) Behavior of TiO(2) released from Nano-TiO(2)-containing paint and comparison to pristine Nano-TiO(2). Environ Sci Technol 48:6710–6718. doi:10.1021/es5006219

    CAS  Google Scholar 

  • Aruoja V, Dubourguier H-C, Kasemets K, Kahru A (2009) Toxicity of nanoparticles of CuO, ZnO and TiO2 to microalgae Pseudokirchneriella subcapitata. Sci Total Environ 407:1461–1468. doi:10.1016/j.scitotenv.2008.10.053

    CAS  Google Scholar 

  • Arvidsson R, SMBASMH (2011) Challenges in exposure modeling of nanoparticles in aquatic environments. Hum. Ecol. Risk Assess. 17

  • Azong-Wara N, Asbach C, Stahlmecke B et al (2009) Optimisation of a thermophoretic personal sampler for nanoparticle exposure studies. J Nanoparticle Res 11:1611–1624. doi:10.1007/s11051-009-9704-0

    CAS  Google Scholar 

  • Baek Y-W, An Y-J (2011) Microbial toxicity of metal oxide nanoparticles (CuO, NiO, ZnO, and Sb2O3) to Escherichia coli, Bacillus subtilis, and Streptococcus aureus. Sci Total Environ 409:1603–1608. doi:10.1016/j.scitotenv.2011.01.014

    CAS  Google Scholar 

  • Bakand S, Hayes A, Dechsakulthorn F (2012) Nanoparticles: a review of particle toxicology following inhalation exposure. Inhal Toxicol 24:125–135. doi:10.3109/08958378.2010.642021

    CAS  Google Scholar 

  • Bakshi M, Singh HB, Abhilash PC (2014) The unseen impact of nanoparticles: more or less ? Curr Sci 106:1–3

    Google Scholar 

  • Bar-Ilan O, Albrecht RM, Fako VE, Furgeson DY (2009) Toxicity assessments of multisized gold and silver nanoparticles in zebrafish embryos. Small 5:1897–1910. doi:10.1002/smll.200801716

    CAS  Google Scholar 

  • Barlow PG, Donaldson K, MacCallum J et al (2005) Serum exposed to nanoparticle carbon black displays increased potential to induce macrophage migration. Toxicol Lett 155:397–401. doi:10.1016/j.toxlet.2004.11.006

    CAS  Google Scholar 

  • Batchelor-mcauley C, Tschulik K, Neumann CCM (2014) Why are silver nanoparticles more toxic than bulk silver ? Towards understanding the dissolution and toxicity of silver nanoparticles. Int J Electrochem Sci 9:1132–1138

    CAS  Google Scholar 

  • Baun A, Hartmann NB, Grieger K, Kusk KO (2008) Ecotoxicity of engineered nanoparticles to aquatic invertebrates: a brief review and recommendations for future toxicity testing. Ecotoxicology 17:387–395. doi:10.1007/s10646-008-0208-y

    CAS  Google Scholar 

  • Bello D, Wardle BL, Yamamoto N et al (2008) Exposure to nanoscale particles and fibers during machining of hybrid advanced composites containing carbon nanotubes. J Nanoparticle Res 11:231–249. doi:10.1007/s11051-008-9499-4

    Google Scholar 

  • Bennat C, Müller-Goymann CC (2000) Skin penetration and stabilization of formulations containing microfine titanium dioxide as physical UV filter. Int J Cosmet Sci 22:271–283. doi:10.1046/j.1467-2494.2000.00009.x

    CAS  Google Scholar 

  • Bhattacharjee S, Ershov D, Islam MA et al (2014) Role of membrane disturbance and oxidative stress in the mode of action underlying the toxicity of differently charged polystyrene nanoparticles. RSC Adv 4:19321. doi:10.1039/c3ra46869k

    CAS  Google Scholar 

  • Blaser SA, Scheringer M, Macleod M, Hungerbühler K (2008) Estimation of cumulative aquatic exposure and risk due to silver: contribution of nano-functionalized plastics and textiles. Sci Total Environ 390:396–409. doi:10.1016/j.scitotenv.2007.10.010

    CAS  Google Scholar 

  • Borm PJ, Kreyling W (2004) Toxicological hazards of inhaled nanoparticles—potential implications for drug delivery. J Nanosci Nanotechnol 4:521–531. doi:10.1166/jnn.2004.081

    CAS  Google Scholar 

  • Borm PJ, Robbins D, Haubold S et al (2006) The potential risks of nanomaterials: a review carried out for ECETOC. Part Fibre Toxicol 3:11. doi:10.1186/1743-8977-3-11

    Google Scholar 

  • Bozich JS, Lohse SE, Torelli MD et al (2014) Surface chemistry, charge and ligand type impact the toxicity of gold nanoparticles to Daphnia magna. Environ Sci Nano 1:260. doi:10.1039/c4en00006d

    CAS  Google Scholar 

  • Brigger I, Dubernet C, Couvreur P (2002) Nanoparticles in cancer therapy and diagnosis. Adv Drug Deliv Rev 54:631–651

    CAS  Google Scholar 

  • Brouwer D (2010) Exposure to manufactured nanoparticles in different workplaces. Toxicology 269:120–127. doi:10.1016/j.tox.2009.11.017

    CAS  Google Scholar 

  • Brown DM, Wilson MR, MacNee W et al (2001) Size-dependent proinflammatory effects of ultrafine polystyrene particles: a role for surface area and oxidative stress in the enhanced activity of ultrafines. Toxicol Appl Pharmacol 175:191–199. doi:10.1006/taap.2001.9240

    CAS  Google Scholar 

  • Carlson C, Hussain SM, Schrand AM et al (2008) Unique cellular interaction of silver nanoparticles: size-dependent generation of reactive oxygen species. J Phys Chem B 112:13608–13619. doi:10.1021/jp712087m

    CAS  Google Scholar 

  • Charron A, Harrison RM (2003) Primary particle formation from vehicle emissions during exhaust dilution in the roadside atmosphere. Atmos Environ 37:4109–4119. doi:10.1016/S1352-2310(03)00510-7

    CAS  Google Scholar 

  • Chaudhry Q, Scotter M, Blackburn J et al (2008) Applications and implications of nanotechnologies for the food sector. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 25:241–258. doi:10.1080/02652030701744538

    CAS  Google Scholar 

  • Chen J, Dong X, Xin Y, Zhao M (2011) Effects of titanium dioxide nano-particles on growth and some histological parameters of zebrafish (Danio rerio) after a long-term exposure. Aquat Toxicol 101:493–499. doi:10.1016/j.aquatox.2010.12.004

    CAS  Google Scholar 

  • Cheng Y, Morshed RA, Auffinger B et al (2014) Multifunctional nanoparticles for brain tumor imaging and therapy. Adv Drug Deliv Rev 66:42–57. doi:10.1016/j.addr.2013.09.006

    CAS  Google Scholar 

  • Choi O, Hu Z (2008) Size dependent and reactive oxygen species related nanosilver toxicity to nitrifying bacteria. Environ Sci Technol 42:4583–4588. doi:10.1021/es703238h

    CAS  Google Scholar 

  • Choi JE, Kim S, Ahn JH et al (2010) Induction of oxidative stress and apoptosis by silver nanoparticles in the liver of adult zebrafish. Aquat Toxicol 100:151–159. doi:10.1016/j.aquatox.2009.12.012

    CAS  Google Scholar 

  • Clift MJD, Rothen-Rutishauser B, Brown DM et al (2008) The impact of different nanoparticle surface chemistry and size on uptake and toxicity in a murine macrophage cell line. Toxicol Appl Pharmacol 232:418–427. doi:10.1016/j.taap.2008.06.009

    CAS  Google Scholar 

  • Cornelis G, Hund-Rinke K, Kuhlbusch T, et al. (2014) Fate and bioavailability of engineered nanoparticles in soils: a review. Crit Rev Environ Sci Technol 140225123544005. doi: 10.1080/10643389.2013.829767

  • Curwin B, Bertke S (2011) Exposure characterization of metal oxide nanoparticles in the workplace. J Occup Environ Hyg 8:580–587. doi:10.1080/15459624.2011.613348

    CAS  Google Scholar 

  • Dahle JT, Arai Y (2014) Effects of Ce(III) and CeO2 nanoparticles on soil-denitrification kinetics. Arch Environ Contam Toxicol. doi:10.1007/s00244-014-0031-9

    Google Scholar 

  • Dawson KA, Salvati A, Lynch I (2009) Nanotoxicology: nanoparticles reconstruct lipids. Nat Nanotechnol 4:84–85. doi:10.1038/nnano.2008.426

    CAS  Google Scholar 

  • Debia M, Beaudry C, Weichenthal S, et al. (2013) Characterization and control of occupational exposure to nanoparticles and ultrafine particles

  • Deng ZJ, Liang M, Toth I et al (2012) Molecular interaction of poly(acrylic acid) gold nanoparticles with human fibrinogen. ACS Nano 6:8962–8969. doi:10.1021/nn3029953

    CAS  Google Scholar 

  • Deng ZJ, Liang M, Toth I et al (2013) Plasma protein binding of positively and negatively charged polymer-coated gold nanoparticles elicits different biological responses. Nanotoxicology 7:314–322. doi:10.3109/17435390.2012.655342

    CAS  Google Scholar 

  • Donaldson K, Li X, MacNee W (1998) Ultrafine (nanometre) particle mediated lung injury. J Aerosol Sci 29:553–560. doi:10.1016/S0021-8502(97)00464-3

    CAS  Google Scholar 

  • Dos Santos CA, Seckler MM, Ingle AP et al (2014) Silver nanoparticles: therapeutical uses, toxicity, and safety issues. J Pharm Sci 103:1931–1944. doi:10.1002/jps.24001

    Google Scholar 

  • Du W, Sun Y, Ji R et al (2011) TiO2 and ZnO nanoparticles negatively affect wheat growth and soil enzyme activities in agricultural soil. J Environ Monit 13:822–828. doi:10.1039/c0em00611d

    CAS  Google Scholar 

  • Du J, Wang S, You H, Zhao X (2013) Understanding the toxicity of carbon nanotubes in the environment is crucial to the control of nanomaterials in producing and processing and the assessment of health risk for human: a review. Environ Toxicol Pharmacol 36:451–462. doi:10.1016/j.etap.2013.05.007

    CAS  Google Scholar 

  • Eidi H, Joubert O, Némos C et al (2012) Drug delivery by polymeric nanoparticles induces autophagy in macrophages. Int J Pharm 422:495–503. doi:10.1016/j.ijpharm.2011.11.020

    CAS  Google Scholar 

  • El Badawy AM, Silva RG, Morris B et al (2011) Surface charge-dependent toxicity of silver nanoparticles. Environ Sci Technol 45:283–287. doi:10.1021/es1034188

    Google Scholar 

  • Elsabahy M, Wooley KL (2012) Design of polymeric nanoparticles for biomedical delivery applications. Chem Soc Rev 41:2545–2561. doi:10.1039/c2cs15327k

    CAS  Google Scholar 

  • Etheridge ML, Campbell SA, Erdman AG et al (2013) The big picture on nanomedicine: the state of investigational and approved nanomedicine products. Nanomedicine 9:1–14. doi:10.1016/j.nano.2012.05.013

    CAS  Google Scholar 

  • Fajardo C, Saccà ML, Costa G et al (2014) Impact of Ag and Al2 O3 nanoparticles on soil organisms: in vitro and soil experiments. Sci Total Environ 473–474:254–261. doi:10.1016/j.scitotenv.2013.12.043

    Google Scholar 

  • Federici G, Shaw BJ, Handy RD (2007) Toxicity of titanium dioxide nanoparticles to rainbow trout (Oncorhynchus mykiss): gill injury, oxidative stress, and other physiological effects. Aquat Toxicol 84:415–430. doi:10.1016/j.aquatox.2007.07.009

    CAS  Google Scholar 

  • Fent K, Weisbrod CJ, Wirth-Heller A, Pieles U (2010) Assessment of uptake and toxicity of fluorescent silica nanoparticles in zebrafish (Danio rerio) early life stages. Aquat Toxicol 100:218–228. doi:10.1016/j.aquatox.2010.02.019

    CAS  Google Scholar 

  • Fertsch-Gapp S, Semmler-Behnke M, Wenk A, Kreyling WG (2011) Binding of polystyrene and carbon black nanoparticles to blood serum proteins. Inhal Toxicol 23:468–475. doi:10.3109/08958378.2011.583944

    CAS  Google Scholar 

  • Finnin BC, Morgan TM (1999) Transdermal penetration enhancers: applications, limitations, and potential. J Pharm Sci 88:955–958

    CAS  Google Scholar 

  • Foldbjerg R, Autrup H (2013) Mech Silver Nanoparticle Toxicity 1:5–15

    Google Scholar 

  • Foldbjerg R, Olesen P, Hougaard M et al (2009) PVP-coated silver nanoparticles and silver ions induce reactive oxygen species, apoptosis and necrosis in THP-1 monocytes. Toxicol Lett 190:156–162. doi:10.1016/j.toxlet.2009.07.009

    CAS  Google Scholar 

  • Foldvari M, Bagonluri M (2008) Carbon nanotubes as functional excipients for nanomedicines: II. Drug delivery and biocompatibility issues. Nanomedicine 4:183–200. doi:10.1016/j.nano.2008.04.003

    CAS  Google Scholar 

  • Fraga S, Brandão A, Soares ME et al (2014) Short- and long-term distribution and toxicity of gold nanoparticles in the rat after a single-dose intravenous administration. Nanomedicine. doi:10.1016/j.nano.2014.06.005

    Google Scholar 

  • Fraser TWK, Reinardy HC, Shaw BJ et al (2011) Dietary toxicity of single-walled carbon nanotubes and fullerenes (C60) in rainbow trout (Oncorhynchus mykiss). Nanotoxicology 5:98–108. doi:10.3109/17435390.2010.502978

    CAS  Google Scholar 

  • Friedlander SK, Pui DYH (2004) Emerging issues in nanoparticle aerosol science and technology. J Nanoparticle Res 6:313–320. doi:10.1023/B:NANO.0000034725.89027.6b

    CAS  Google Scholar 

  • Gagné F, Auclair J, Turcotte P et al (2008) Ecotoxicity of CdTe quantum dots to freshwater mussels: impacts on immune system, oxidative stress and genotoxicity. Aquat Toxicol 86:333–340. doi:10.1016/j.aquatox.2007.11.013

    Google Scholar 

  • Gaiser BK, Fernandes TF, Jepson MA et al (2012) Interspecies comparisons on the uptake and toxicity of silver and cerium dioxide nanoparticles. Environ Toxicol Chem 31:144–154. doi:10.1002/etc.703

    CAS  Google Scholar 

  • García-Alonso J, Rodriguez-Sanchez N, Misra SK et al (2014) Toxicity and accumulation of silver nanoparticles during development of the marine polychaete Platynereis dumerilii. Sci Total Environ 476–477:688–695. doi:10.1016/j.scitotenv.2014.01.039

    Google Scholar 

  • García-Gómez C, Babin M, Obrador A et al (2014) Toxicity of ZnO nanoparticles, ZnO bulk, and ZnCl2 on earthworms in a spiked natural soil and toxicological effects of leachates on aquatic organisms. Arch Environ Contam Toxicol. doi:10.1007/s00244-014-0025-7

    Google Scholar 

  • Garner KL, Keller AA (2014) Emerging patterns for engineered nanomaterials in the environment: a review of fate and toxicity studies. J Nanoparticle Res 16:2503. doi:10.1007/s11051-014-2503-2

    Google Scholar 

  • Gehr P (2000) Particle-Lung Interactions. 823

  • George S, Gardner H, Seng EK et al (2014) Differential effect of solar light in increasing the toxicity of silver and titanium dioxide nanoparticles to a fish cell line and zebrafish embryos. Environ Sci Technol 48:6374–6382. doi:10.1021/es405768n

    CAS  Google Scholar 

  • Gliga AR, Skoglund S, Wallinder IO et al (2014) Size-dependent cytotoxicity of silver nanoparticles in human lung cells: the role of cellular uptake, agglomeration and Ag release. Part Fibre Toxicol 11:11. doi:10.1186/1743-8977-11-11

    Google Scholar 

  • Gondikas AP, von der Kammer F, Reed RB et al (2014) Release of @@@TiO2 nanoparticles from sunscreens into surface waters: a one-year survey at the old Danube recreational Lake. Environ Sci Technol 48:5415–5422. doi:10.1021/es405596y

    CAS  Google Scholar 

  • Goodman CM, McCusker CD, Yilmaz T, Rotello VM (2004) Toxicity of gold nanoparticles functionalized with cationic and anionic side chains. Bioconjug Chem 15:897–900. doi:10.1021/bc049951i

    CAS  Google Scholar 

  • Gottschalk F, Nowack B (2011) The release of engineered nanomaterials to the environment. J Environ Monit 13:1145–1155. doi:10.1039/c0em00547a

    CAS  Google Scholar 

  • Gottschalk F, Scholz RW, Nowack B (2010) Probabilistic material flow modeling for assessing the environmental exposure to compounds: methodology and an application to engineered nano-TiO2 particles. Environ Model Softw 25:320–332. doi:10.1016/j.envsoft.2009.08.011

    Google Scholar 

  • Griffitt RJ, Luo J, Gao J et al (2008) Effects of particle composition and species on toxicity of metallic nanomaterials in aquatic organisms. Environ Toxicol Chem 27:1972–1978. doi:10.1897/08-002.1

    CAS  Google Scholar 

  • Han Y, Xu J, Li Z et al (2012) In vitro toxicity of multi-walled carbon nanotubes in C6 rat glioma cells. Neurotoxicology 33:1128–1134. doi:10.1016/j.neuro.2012.06.004

    CAS  Google Scholar 

  • Hardman R (2007) A toxicologic review of quantum dots: toxicity depends on physicochemical and environmental factors

  • Heal MR, Kumar P, Harrison RM (2012) Particles, air quality, policy and health. Chem Soc Rev 41:6606–6630. doi:10.1039/c2cs35076a

    CAS  Google Scholar 

  • Helland A, Wick P, Koehler A et al (2008) Reviewing the environmental and human health knowledge base of carbon nanotubes. Cien Saude Colet 13:441–452. doi:10.1590/S1413-81232008000200019

    Google Scholar 

  • Herzog E, Byrne HJ, Davoren M et al (2009) Dispersion medium modulates oxidative stress response of human lung epithelial cells upon exposure to carbon nanomaterial samples. Toxicol Appl Pharmacol 236:276–281. doi:10.1016/j.taap.2009.02.007

    CAS  Google Scholar 

  • Hillyer JF, Albrecht RM (2001) Gastrointestinal persorption and tissue distribution of differently sized colloidal gold nanoparticles. J Pharm Sci 90:1927–1936

    CAS  Google Scholar 

  • Hoet PHM, Geys J, Nemmar A, Nemery B (2007) Inhalation of nanomaterials: Short overview of the local and systemic effects. In: Simeonova PP, Opopol N, Luster MI (eds) Nanotechnology–Toxicological Issues Environ. Saf. Springer, Netherlands, pp 77–90. doi: 10.1007/978-1-4020-6076-2_5

  • Hoshino A, Fujioka K, Oku T et al (2004) Physicochemical properties and cellular toxicity of nanocrystal quantum dots depend on their surface modification. Nano Lett 4:2163–2169. doi:10.1021/nl048715d

    CAS  Google Scholar 

  • Hsiao I-L, Huang Y-J (2011) Effects of various physicochemical characteristics on the toxicities of ZnO and TiO nanoparticles toward human lung epithelial cells. Sci Total Environ 409:1219–1228. doi:10.1016/j.scitotenv.2010.12.033

    CAS  Google Scholar 

  • Hu Y-L, Qi W, Han F et al (2011) Toxicity evaluation of biodegradable chitosan nanoparticles using a zebrafish embryo model. Int J Nanomedicine 6:3351–3359. doi:10.2147/IJN.S25853

    CAS  Google Scholar 

  • Jacobson MZ (2003) Development of mixed-phase clouds from multiple aerosol size distributions and the effect of the clouds on aerosol removal. J Geophys Res 108:4245. doi:10.1029/2002JD002691

    Google Scholar 

  • Jain S, Hirst DG, O’Sullivan JM (2012) Gold nanoparticles as novel agents for cancer therapy. Br J Radiol 85:101–113. doi:10.1259/bjr/59448833

    CAS  Google Scholar 

  • Jani P, Halbert GW, Langridge J, Florence AT (1990) Nanoparticle uptake by the rat gastrointestinal mucosa: quantitation and particle size dependency. J Pharm Pharmacol 42:821–826

    CAS  Google Scholar 

  • Jeong C-H, Evans GJ (2009) Inter-comparison of a fast mobility particle sizer and a scanning mobility particle sizer incorporating an ultrafine water-based condensation particle counter. Aerosol Sci Technol 43:364–373. doi:10.1080/02786820802662939

    CAS  Google Scholar 

  • Kaiser J-P, Buerki-Thurnherr T, Wick P (2012) Influence of single walled carbon nanotubes at subtoxical concentrations on cell adhesion and other cell parameters of human epithelial cells. J King Saud Univ Sci 25:15–27. doi:10.1016/j.jksus.2012.06.003

    Google Scholar 

  • Keller AA, Lazareva A (2014) Predicted releases of engineered nanomaterials: from global to regional to local. Environ Sci Technol Lett 1:65–70. doi:10.1021/ez400106t

    CAS  Google Scholar 

  • Khare P, Sonane M, Pandey R et al (2011) Adverse effects of TiO2and ZnO nanoparticles in soil nematode, Caenorhabditis elegans. J Biomed Nanotechnol 7:116–117. doi:10.1166/jbn.2011.1229

    CAS  Google Scholar 

  • Khodakovskaya M, Dervishi E, Mahmood M et al (2009) Carbon nanotubes are able to penetrate plant seed coat and dramatically affect seed germination and plant growth. ACS Nano 3:3221–3227. doi:10.1021/nn900887m

    CAS  Google Scholar 

  • Kim JA, Åberg C, de Cárcer G et al (2013) Low dose of amino-modified nanoparticles induces cell cycle arrest. ACS Nano 7:7483–7494. doi:10.1021/nn403126e

    CAS  Google Scholar 

  • Kittler S, Greulich C, Diendorf J et al (2010) Toxicity of silver nanoparticles increases during storage because of slow dissolution under release of silver ions. Chem Mater 22:4548–4554. doi:10.1021/cm100023p

    CAS  Google Scholar 

  • Kreyling WG, Semmler M, Erbe F et al (2002) Translocation of ultrafine insoluble iridium particles from lung epithelium to extrapulmonary organs is size dependent but very low. J Toxicol Environ Health A 65:1513–1530. doi:10.1080/00984100290071649

    CAS  Google Scholar 

  • Kuhlbusch TA, Asbach C, Fissan H et al (2011) Nanoparticle exposure at nanotechnology workplaces: a review. Part Fibre Toxicol 8:22. doi:10.1186/1743-8977-8-22

    Google Scholar 

  • Kumar P, Fennell P, Robins A (2010) Comparison of the behaviour of manufactured and other airborne nanoparticles and the consequences for prioritising research and regulation activities. J Nanopart Res 12:1523–1530. doi:10.1007/s11051-010-9893-6

    CAS  Google Scholar 

  • Kumar P, Ketzel M, Vardoulakis S et al (2011a) Dynamics and dispersion modelling of nanoparticles from road traffic in the urban atmospheric environment—a review. J Aerosol Sci 42:580–603. doi:10.1016/j.jaerosci.2011.06.001

    CAS  Google Scholar 

  • Kumar P, Robins A, Vardoulakis S, Quincey P (2011b) Technical challenges in tackling regulatory concerns for urban atmospheric nanoparticles. Particuology 9:566–571. doi:10.1016/j.partic.2011.06.002

    CAS  Google Scholar 

  • Kumar P, Morawska L, Harrison R (2013) Urban air quality in Europe. Urban Air Qual Eur SE 161(26):339–365. doi:10.1007/978-3-642-38451-6

    Google Scholar 

  • Kwon SJ, Bard AJ (2012) DNA analysis by application of Pt nanoparticle electrochemical amplification with single label response. J Am Chem Soc 134:10777–10779. doi:10.1021/ja304074f

    CAS  Google Scholar 

  • Laakso L (2003) Ultrafine particle scavenging coefficients calculated from 6 years field measurements. Atmos Environ 37:3605–3613. doi:10.1016/S1352-2310(03)00326-1

    CAS  Google Scholar 

  • Lahive E, Jurkschat K, Shaw BJ et al (2014) Toxicity of cerium oxide nanoparticles to the earthworm Eisenia fetida: subtle effects. Environ Chem 11:268. doi:10.1071/EN14028

    CAS  Google Scholar 

  • Lanone S, Andujar P, Kermanizadeh A, Boczkowski J (2013) Determinants of carbon nanotube toxicity. Adv Drug Deliv Rev 65:2063–2069. doi:10.1016/j.addr.2013.07.019

    CAS  Google Scholar 

  • Lee JH, Ahn K, Kim SM et al (2012) Continuous 3-day exposure assessment of workplace manufacturing silver nanoparticles. J Nanoparticle Res 14:1134. doi:10.1007/s11051-012-1134-8

    Google Scholar 

  • Lee BP, Li YJ, Flagan RC et al (2013) Sizing characterization of the fast-mobility particle sizer (FMPS) against SMPS and HR-ToF-AMS. Aerosol Sci Technol 47:1030–1037. doi:10.1080/02786826.2013.810809

    CAS  Google Scholar 

  • Levard C, Hotze EM, Lowry GV, Brown GE (2012) Environmental transformations of silver nanoparticles: impact on stability and toxicity. Environ Sci Technol 46:6900–6914. doi:10.1021/es2037405

    CAS  Google Scholar 

  • Liang XW, Xu ZP, Grice J et al (2013) Penetration of nanoparticles into human skin. Curr Pharm Des 19:6353–6366

    CAS  Google Scholar 

  • Ling M-P, Chio C-P, Chou W-C et al (2011) Assessing the potential exposure risk and control for airborne titanium dioxide and carbon black nanoparticles in the workplace. Environ Sci Pollut Res Int 18:877–889. doi:10.1007/s11356-011-0447-y

    CAS  Google Scholar 

  • Liu R, Zhang X, Pu Y et al (2010) Small-sized titanium dioxide nanoparticles mediate immune toxicity in rat pulmonary alveolar macrophages in vivo. J Nanosci Nanotechnol 10:5161–5169

    CAS  Google Scholar 

  • Losert S, von Goetz N, Bekker C et al (2014) Human exposure to conventional and nanoparticle-containing sprays-a critical review. Environ Sci Technol 48:5366–5378. doi:10.1021/es5001819

    CAS  Google Scholar 

  • Love SA, Maurer-Jones MA, Thompson JW et al (2012) Assessing nanoparticle toxicity. Annu Rev Anal Chem (Palo Alto, Calif) 5:181–205. doi:10.1146/annurev-anchem-062011-143134

    CAS  Google Scholar 

  • Madani SY, Mandel A, Seifalian AM (2014) A concise review of carbon nanotube’ s toxicology. Nano Rev 4:1–16

    Google Scholar 

  • Mahmoudi M, Laurent S, Shokrgozar MA, Hosseinkhani M (2011) Toxicity evaluations of superparamagnetic iron oxide nanoparticles: cell “vision” versus physicochemical properties of nanoparticles. ACS Nano 5:7263–7276. doi:10.1021/nn2021088

    CAS  Google Scholar 

  • Mariani V, Ponti J, Giudetti G et al (2012) Online monitoring of cell metabolism to assess the toxicity of nanoparticles: the case of cobalt ferrite. Nanotoxicology 6:272–287. doi:10.3109/17435390.2011.572302

    CAS  Google Scholar 

  • Matsuda Y, Torimoto T, Kameya T et al (2013) ZnS–AgInS2 nanoparticles as a temperature sensor. Sensors Actuators B Chem 176:505–508. doi:10.1016/j.snb.2012.09.005

    CAS  Google Scholar 

  • Maurer-Jones MA, Gunsolus IL, Murphy CJ, Haynes CL (2013) Toxicity of engineered nanoparticles in the environment. Anal Chem 85:3036–3049. doi:10.1021/ac303636s

    CAS  Google Scholar 

  • Mavon A, Miquel C, Lejeune O et al (2007) In vitro percutaneous absorption and in vivo stratum corneum distribution of an organic and a mineral sunscreen. Skin Pharmacol Physiol 20:10–20. doi:10.1159/000096167

    CAS  Google Scholar 

  • Meesters JAJ, Veltman K, Hendriks AJ, van de Meent D (2013) Environmental exposure assessment of engineered nanoparticles: why REACH needs adjustment. Integr Environ Assess Manag 9:e15–e26. doi:10.1002/ieam.1446

    Google Scholar 

  • Miethling-graff R, Rumpker R, Richter M et al (2014) Toxicology in vitro exposure to silver nanoparticles induces size- and dose-dependent oxidative stress and cytotoxicity in human colon carcinoma cells. Toxicol Vitro 28:1280–1289. doi:10.1016/j.tiv.2014.06.005

    CAS  Google Scholar 

  • Migowski P, Dupont J (2007) Catalytic applications of metal nanoparticles in imidazolium ionic liquids. Chemistry 13:32–39. doi:10.1002/chem.200601438

    CAS  Google Scholar 

  • Miller F, Asgharian B, Hofmann W (2005) Dosimetry of nanoparticles in humans: from children to adults. In: Gardner DE (ed) Toxicol. Lung, 4th ed. CRC Press, Boca Raton, pp 151–194. doi:10.1201/NOE0849328350.ch5

  • Monteiro-riviere NA, Inman AO (2006) Challenges for assessing carbon nanomaterial toxicity to the skin. Carbon N Y 44:1070–1078. doi:10.1016/j.carbon.2005.11.004

    CAS  Google Scholar 

  • Moreno MA, Ballesteros MP, Frutos P (2003) Lecithin-based oil-in-water microemulsions for parenteral use: pseudoternary phase diagrams, characterization and toxicity studies. J Pharm Sci 92:1428–1437. doi:10.1002/jps.10412

    CAS  Google Scholar 

  • Morimoto Y, Kobayashi N (2010) Hazard assessments of manufactured nanomaterials. J Occup Health 52:325–334

    CAS  Google Scholar 

  • Mortimer M, Kasemets K, Kahru A (2010) Toxicity of ZnO and CuO nanoparticles to ciliated protozoa Tetrahymena thermophila. Toxicology 269:182–189. doi:10.1016/j.tox.2009.07.007

    CAS  Google Scholar 

  • Mueller NC, Nowack B (2008) Exposure modeling of engineered nanoparticles in the environment. Environ Sci Technol 42:4447–4453. doi:10.1021/es7029637

    CAS  Google Scholar 

  • Mühlfeld C, Gehr P, Rothen-Rutishauser B (2008) Translocation and cellular entering mechanisms of nanoparticles in the respiratory tract. Swiss Med Wkly 138:387–91. doi: 2008/27/smw-12153

  • Nangia S, Sureshkumar R (2012) Effects of nanoparticle charge and shape anisotropy on translocation through cell membranes. Langmuir 28:17666–17671. doi:10.1021/la303449d

    CAS  Google Scholar 

  • Narayanan R, El-Sayed MA (2005) Catalysis with transition metal nanoparticles in colloidal solution: nanoparticle shape dependence and stability. J Phys Chem B 109:12663–12676. doi:10.1021/jp051066p

    CAS  Google Scholar 

  • Nel A, Xia T, Mädler L, Li N (2006) Toxic potential of materials at the nanolevel. Science 311:622–627. doi:10.1126/science.1114397

    CAS  Google Scholar 

  • Nemmar A, Vanbilloen H, Hoylaerts MF et al (2001) Passage of intratracheally instilled ultrafine particles from the lung into the systemic circulation in hamster. Am J Respir Crit Care Med 164:1665–1668. doi:10.1164/ajrccm.164.9.2101036

    CAS  Google Scholar 

  • Nowack B, Bucheli TD (2007) Occurrence, behavior and effects of nanoparticles in the environment. Environ Pollut 150:5–22. doi:10.1016/j.envpol.2007.06.006

    CAS  Google Scholar 

  • Nowack B, Mueller NC, Krug HF, Wick P (2014) How to consider engineered nanomaterials in major accident regulations? Environ Sci Eur 26:2. doi:10.1186/2190-4715-26-2

    Google Scholar 

  • Oberdörster E (2004) Manufactured nanomaterials (fullerenes, C60) induce oxidative stress in the brain of juvenile largemouth bass. Environ Health Perspect 112:1058–1062

    Google Scholar 

  • Oberdörster G, Sharp Z, Atudorei V et al (2002) Extrapulmonary translocation of ultrafine carbon particles following whole-body inhalation exposure of rats. J Toxicol Environ Health A 65:1531–1543. doi:10.1080/00984100290071658

    Google Scholar 

  • Oberdörster G, Sharp Z, Atudorei V et al (2004) Translocation of inhaled ultrafine particles to the brain. Inhal Toxicol 16:437–445. doi:10.1080/08958370490439597

    Google Scholar 

  • Oberdörster G, Oberdörster E, Oberdörster J (2005) Nanotoxicology: an emerging discipline evolving from studies of ultrafine particles. Environ Health Perspect 113:823–839 doi:10.1289/ehp.7339

  • Oberdörster E, Zhu S, Blickley TM et al (2006) Ecotoxicology of carbon-based engineered nanoparticles: effects of fullerene (C60) on aquatic organisms. Carbon NY 44:1112–1120. doi:10.1016/j.carbon.2005.11.008

    Google Scholar 

  • Oberdörster G, Sharp Z, Atudorei V, et al. (2008) Translocation of inhaled ultrafine particles to the brain

  • Pan Y, Neuss S, Leifert A et al (2007) Size-dependent cytotoxicity of gold nanoparticles. Small 3:1941–1949

    CAS  Google Scholar 

  • Park MVDZ, Neigh AM, Vermeulen JP et al (2011) The effect of particle size on the cytotoxicity, inflammation, developmental toxicity and genotoxicity of silver nanoparticles. Biomaterials 32:9810–9817. doi:10.1016/j.biomaterials.2011.08.085

    CAS  Google Scholar 

  • Patil MA, Parikh PA (2014) Investigation on likely effects of Ag, TiO2, and ZnO nanoparticles on sewage treatment. Bull Environ Contam Toxicol 92:109–114. doi:10.1007/s00128-013-1141-1

    CAS  Google Scholar 

  • Pattan G, Kaul G (2012) Health hazards associated with nanomaterials. Toxicol Ind Health 30:499–519. doi:10.1177/0748233712459900

    Google Scholar 

  • Peyrot C, Wilkinson KJ, Desrosiers M, Sauvé S (2014) Effects of silver nanoparticles on soil enzyme activities with and without added organic matter. Environ Toxicol Chem 33:115–125. doi:10.1002/etc.2398

    CAS  Google Scholar 

  • Pichardo S, Gutiérrez-Praena D, Puerto M et al (2012) Oxidative stress responses to carboxylic acid functionalized single wall carbon nanotubes on the human intestinal cell line Caco-2. Toxicol In Vitro 26:672–677. doi:10.1016/j.tiv.2012.03.007

    CAS  Google Scholar 

  • Pipal AS, Taneja A, Jaiswar G (2014) Chemistry: the key to our sustainable future. In: Gupta Bhowon M, Jhaumeer-Laulloo S, Li Kam Wah H, Ramasami P (eds) Springer Netherlands, Dordrecht, pp 93–103

  • Popov AP, Priezzhev AV, Lademann J, Myllylä R (2005) TiO 2 nanoparticles as an effective UV-B radiation skin-protective compound in sunscreens. J Phys D Appl Phys 38:2564–2570. doi:10.1088/0022-3727/38/15/006

    CAS  Google Scholar 

  • Praetorius A, Scheringer M, Hungerbühler K (2012) Development of environmental fate models for engineered nanoparticles—a case study of TiO2 nanoparticles in the Rhine river. Environ Sci Technol 46:6705–6713. doi:10.1021/es204530n

    CAS  Google Scholar 

  • Premanathan M, Karthikeyan K, Jeyasubramanian K, Manivannan G (2011) Selective toxicity of ZnO nanoparticles toward Gram-positive bacteria and cancer cells by apoptosis through lipid peroxidation. Nanomedicine 7:184–192. doi:10.1016/j.nano.2010.10.001

    CAS  Google Scholar 

  • Quik JTK, Vonk JA, Hansen SF et al (2011) How to assess exposure of aquatic organisms to manufactured nanoparticles? Environ Int 37:1068–1077. doi:10.1016/j.envint.2011.01.015

    CAS  Google Scholar 

  • Quik JTK, Velzeboer I, Wouterse M et al (2014) Heteroaggregation and sedimentation rates for nanomaterials in natural waters. Water Res 48:269–279. doi:10.1016/j.watres.2013.09.036

    CAS  Google Scholar 

  • Reijnders L (2006) Cleaner nanotechnology and hazard reduction of manufactured nanoparticles. J Clean Prod 14:124–133. doi:10.1016/j.jclepro.2005.03.018

    Google Scholar 

  • Ricke SC, Hanning I (2013) Nanotechnology safety. doi: 10.1016/B978-0-444-59438-9.00009-6

  • Rispoli F, Angelov A, Badia D et al (2010) Understanding the toxicity of aggregated zero valent copper nanoparticles against Escherichia coli. J Hazard Mater 180:212–216. doi:10.1016/j.jhazmat.2010.04.016

    CAS  Google Scholar 

  • Roy I, Ohulchanskyy TY, Pudavar HE et al (2003) Ceramic-based nanoparticles entrapping water-insoluble photosensitizing anticancer drugs: a novel drug-carrier system for photodynamic therapy. J Am Chem Soc 125:7860–7865. doi:10.1021/ja0343095

    CAS  Google Scholar 

  • Ruffini Castiglione M, Giorgetti L, Cremonini R et al (2014) Impact of TiO2 nanoparticles on Vicia narbonensis L.: potential toxicity effects. Protoplasma. doi:10.1007/s00709-014-0649-5

    Google Scholar 

  • Rundell KW (2008) High levels of airborne ultrafine and fine particulate matter in indoor ice arenas. Inhal Toxicol 15:237–250

    Google Scholar 

  • Sánchez A, Recillas S, Font X et al (2011) Ecotoxicity of, and remediation with, engineered inorganic nanoparticles in the environment. TrAC Trends Anal Chem 30:507–516. doi:10.1016/j.trac.2010.11.011

    Google Scholar 

  • Saptarshi SR, Duschl A, Lopata AL (2013) Interaction of nanoparticles with proteins: relation to bio-reactivity of the nanoparticle. J Nanobiotechnol 11:26. doi:10.1186/1477-3155-11-26

    CAS  Google Scholar 

  • Sarma SJ, Bhattacharya I, Brar SK, et al. (2014) Carbon nanotube- bioaccumulation and Recent advances in environmental monitoring. Crit Rev Environ Sci Technol 00–00. doi: 10.1080/10643389.2014.924177

  • Scown TM, Santos EM, Johnston BD et al (2010) Effects of aqueous exposure to silver nanoparticles of different sizes in rainbow trout. Toxicol Sci 115:521–534. doi:10.1093/toxsci/kfq076

    CAS  Google Scholar 

  • Shang L, Nienhaus K, Nienhaus GU (2014) Engineered nanoparticles interacting with cells: size matters. J Nanobiotechnol 12:5. doi:10.1186/1477-3155-12-5

    Google Scholar 

  • Sharifi S, Behzadi S, Laurent S et al (2012) Toxicity of nanomaterials. Chem Soc Rev 41:2323–2343. doi:10.1039/c1cs15188f

    CAS  Google Scholar 

  • Sharma VK, Siskova KM, Zboril R, Gardea-Torresdey JL (2014) Organic-coated silver nanoparticles in biological and environmental conditions: fate, stability and toxicity. Adv Colloid Interface Sci 204:15–34. doi:10.1016/j.cis.2013.12.002

    CAS  Google Scholar 

  • Shiohara A, Hoshino A, Hanaki K et al (2004) On the cyto-toxicity caused by quantum dots. Microbiol Immunol 48:669–675. doi:10.1111/j.1348-0421.2004.tb03478.x

    CAS  Google Scholar 

  • Shvedova AA, Castranova V, Kisin ER et al (2003) Exposure to carbon nanotube material: assessment of nanotube cytotoxicity using human keratinocyte cells. J Toxicol Environ Health A 66:1909–1926. doi:10.1080/713853956

    CAS  Google Scholar 

  • Skebo JE, Grabinski CM, Schrand AM et al (2007) Assessment of metal nanoparticle agglomeration, uptake, and interaction using high-illuminating system. Int J Toxicol 26:135–141. doi:10.1080/10915810701226248

    CAS  Google Scholar 

  • Slivka S, Landeen L, Zeigler F, Zimber M, Bartel R (1993) Characterization, barrier function, and drug metabolism of an in vitro skin model. J Invest Dermatol 100:40–46

    CAS  Google Scholar 

  • Sönnichsen C, Reinhard BM, Liphardt J, Alivisatos AP (2005) A molecular ruler based on plasmon coupling of single gold and silver nanoparticles. Nat Biotechnol 23:741–745. doi:10.1038/nbt1100

    Google Scholar 

  • Stahlmecke B, Wagener S, Asbach C, et al. (2009) Agglomerate Stability in orifices experimental setup data evaluation. 2009

  • Stark WJ (2011) Nanoparticles in biological systems. Angew Chem Int Ed Engl 50:1242–1258. doi:10.1002/anie.200906684

    CAS  Google Scholar 

  • Stoehr LC, Gonzalez E, Stampfl A et al (2011) Shape matters: effects of silver nanospheres and wires on human alveolar epithelial cells. Part Fibre Toxicol 8:36. doi:10.1186/1743-8977-8-36

    CAS  Google Scholar 

  • Swain P, Sasmal A, Nayak SK et al (2014) Evaluation of selected metal nanoparticles on hatching and survival of larvae and fry of Indian major carp, rohu (Labeo rohita). Aquac Res n/a–n/a. doi:10.1111/are.12510

    Google Scholar 

  • Tarantola M, Pietuch A, Schneider D, et al. (2011) Toxicity of gold-nanoparticles: synergistic effects of shape and surface functionalization on micromotility of epithelial cells

  • Teow Y, Asharani PV, Hande MP, Valiyaveettil S (2011) Health impact and safety of engineered nanomaterials. Chem Commun (Camb) 47:7025–7038. doi:10.1039/c0cc05271j

    CAS  Google Scholar 

  • Tiwari AJ, Marr LC (2010) The role of atmospheric transformations in determining environmental impacts of carbonaceous nanoparticles. J Environ Qual 39:1883–1895

    CAS  Google Scholar 

  • Tjälve H, Henriksson J (1999) Uptake of metals in the brain via olfactory pathways. Neurotoxicology 20:181–195

    Google Scholar 

  • Tsai CS-J, White D, Rodriguez H et al (2012) Exposure assessment and engineering control strategies for airborne nanoparticles: an application to emissions from nanocomposite compounding processes. J Nanoparticle Res 14:989. doi:10.1007/s11051-012-0989-z

    Google Scholar 

  • Tsuji JS, Maynard AD, Howard PC et al (2006) Research strategies for safety evaluation of nanomaterials, part IV: risk assessment of nanoparticles. Toxicol Sci 89:42–50. doi:10.1093/toxsci/kfi339

    CAS  Google Scholar 

  • Umamaheswari K, Baskar R, Chandru K et al (2014) Antibacterial activity of gold nanoparticles and their toxicity assessment. BMC Infect Dis 14:P64. doi:10.1186/1471-2334-14-S3-P64

    Google Scholar 

  • Valant J, Drobne D, Novak S (2012) Effect of ingested titanium dioxide nanoparticles on the digestive gland cell membrane of terrestrial isopods. Chemosphere 87:19–25. doi:10.1016/j.chemosphere.2011.11.047

    CAS  Google Scholar 

  • Valizadeh A, Mikaeili H, Samiei M et al (2012) Quantum dots: synthesis, bioapplications, and toxicity. Nanoscale Res Lett 7:480. doi:10.1186/1556-276X-7-480

    Google Scholar 

  • Van der Ploeg MJC, Handy RD, Waalewijn-Kool PL et al (2014) Effects of silver nanoparticles (NM-300K) on Lumbricus rubellus earthworms and particle characterization in relevant test matrices including soil. Environ Toxicol Chem 33:743–752. doi:10.1002/etc.2487

    Google Scholar 

  • Vertegel AA, Siegel RW, Dordick JS (2004) Silica nanoparticle size influences the structure and enzymatic activity of adsorbed lysozyme. Langmuir 20:6800–6807. doi:10.1021/la0497200

    CAS  Google Scholar 

  • Vílchez-Maldonado S, Calderó G, Esquena J, Molina R (2014) UV protective textiles by the deposition of functional ethylcellulose nanoparticles. Cellulose 21:2133–2145. doi:10.1007/s10570-014-0217-3

    Google Scholar 

  • Wang J, Xu D, Kawde A-N, Polsky R (2001) Metal nanoparticle-based electrochemical stripping potentiometric detection of DNA hybridization. Anal Chem 73:5576–5581. doi:10.1021/ac0107148

    CAS  Google Scholar 

  • Wang B, Feng W-Y, Wang T-C et al (2006) Acute toxicity of nano- and micro-scale zinc powder in healthy adult mice. Toxicol Lett 161:115–123. doi:10.1016/j.toxlet.2005.08.007

    CAS  Google Scholar 

  • Wang J, Zhu X, Zhang X et al (2011) Disruption of zebrafish (Danio rerio) reproduction upon chronic exposure to TiO2 nanoparticles. Chemosphere 83:461–467. doi:10.1016/j.chemosphere.2010.12.069

    CAS  Google Scholar 

  • Ward JE, Kach DJ (2009) Marine aggregates facilitate ingestion of nanoparticles by suspension-feeding bivalves. Mar Environ Res 68:137–142. doi:10.1016/j.marenvres.2009.05.002

    CAS  Google Scholar 

  • Ware MJ, Godin B, Singh N et al (2014) Analysis of the influence of cell heterogeneity on nanoparticle dose response. ACS Nano 8:6693–6700. doi:10.1021/nn502356f

    CAS  Google Scholar 

  • Wehner B, Wiedensohler A (2003) Long term measurements of submicrometer urban aerosols: statistical analysis for correlations with meteorological conditions and trace gases. Chem Phys

  • Wiench K, Wohlleben W, Hisgen V et al (2009) Acute and chronic effects of nano- and non-nano-scale TiO(2) and ZnO particles on mobility and reproduction of the freshwater invertebrate Daphnia magna. Chemosphere 76:1356–1365. doi:10.1016/j.chemosphere.2009.06.025

    CAS  Google Scholar 

  • Wu Z, Hu M, Lin P et al (2008) Particle number size distribution in the urban atmosphere of Beijing, China. Atmos Environ 42:7967–7980. doi:10.1016/j.atmosenv.2008.06.022

    CAS  Google Scholar 

  • Xia T, Kovochich M, Liong M et al (2008) Cationic polystyrene nanosphere toxicity depends on cell-specific endocytic and mitochondrial injury pathways. ACS Nano 2:85–96. doi:10.1021/nn700256c

    CAS  Google Scholar 

  • Xiao X, Fan F-RF, Zhou J, Bard AJ (2008) Current transients in single nanoparticle collision events. J Am Chem Soc 130:16669–16677. doi:10.1021/ja8051393

    CAS  Google Scholar 

  • Yu WW, Chang E, Drezek R, Colvin VL (2006) Water-soluble quantum dots for biomedical applications. Biochem Biophys Res Commun 348:781–786. doi:10.1016/j.bbrc.2006.07.160

    CAS  Google Scholar 

  • Yue Y, Behra R, Sigg L et al (2014) Toxicity of silver nanoparticles to a fish gill cell line: role of medium composition. Nanotoxicology. doi:10.3109/17435390.2014.889236

    Google Scholar 

  • Zhang L, Gu FX, Chan JM et al (2008) Nanoparticles in medicine: therapeutic applications and developments. Clin Pharmacol Ther 83:761–769. doi:10.1038/sj.clpt.6100400

    CAS  Google Scholar 

  • Zhu X, Chang Y, Chen Y (2010a) Toxicity and bioaccumulation of TiO2 nanoparticle aggregates in Daphnia magna. Chemosphere 78:209–215. doi:10.1016/j.chemosphere.2009.11.013

    CAS  Google Scholar 

  • Zhu X, Wang J, Zhang X et al (2010b) Trophic transfer of TiO(2) nanoparticles from Daphnia to zebrafish in a simplified freshwater food chain. Chemosphere 79:928–933. doi:10.1016/j.chemosphere.2010.03.022

    CAS  Google Scholar 

  • Zhu Z-J, Carboni R, Quercio MJ et al (2010c) Surface properties dictate uptake, distribution, excretion, and toxicity of nanoparticles in fish. Small 6:2261–2265. doi:10.1002/smll.201000989

    CAS  Google Scholar 

  • Zimmer AT, Baron PA, Biswas P (2002) The in uence of operating parameters on number-weighted aerosol size distribution generated from a gas metal arc welding process. 33:519–531

Download references

Acknowledgments

Muhammad Sajid, Muhammad Daud, and Nadeem Baig are highly thankful to KFUPM for providing scholarships for their PhD studies. Chanbasha Basheer gratefully acknowledges the Deanship of Scientific Research of KFUPM for the financial support of project (project no: IN141012).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad Sajid.

Additional information

Responsible editor: Philippe Garrigues

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sajid, M., Ilyas, M., Basheer, C. et al. Impact of nanoparticles on human and environment: review of toxicity factors, exposures, control strategies, and future prospects. Environ Sci Pollut Res 22, 4122–4143 (2015). https://doi.org/10.1007/s11356-014-3994-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-014-3994-1

Keywords

Navigation