Skip to main content
Log in

Prediction and quantifying parameter importance in simultaneous anaerobic sulfide and nitrate removal process using artificial neural network

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

The present investigation deals with the prediction of the performance of simultaneous anaerobic sulfide and nitrate removal in an upflow anaerobic sludge bed (UASB) reactor through an artificial neural network (ANN). Influent sulfide concentration, influent nitrate concentration, S/N mole ratio, pH, and hydraulic retention time (HRT) for 144 days’ steady-state condition were the inputs of the model; whereas output parameters were sulfide removal percentage, nitrate removal percentage, sulfate production percentage, and nitrogen production percentage. The prediction performance was evaluated by calculating root mean square error (RMSE), mean absolute error (MAE), mean absolute relative error (MARE), and determination coefficient (R 2) values. Generally, the ANN model exhibited good prediction of the simultaneous sulfide and nitrate removal process. The effect of five input parameters to the performance of the reactor was quantified and compared using the connection weights method, Garson’s algorithm method, and partial derivatives (PaD) method. The results showed that HRT markedly affects the performance of the reactor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • An S, Tang K, Nemati M (2010) Simultaneous biodesulphurization and denitrification using an oil reservoir microbial culture: effects of sulphide loading rate and sulphide to nitrate loading ratio. Water Res 44:1531–1541. doi:10.1016/j.watres.2009.10.037

    Article  CAS  Google Scholar 

  • APHA, AWWA, WPCF (1998) Standard methods for the examination of water and wastewater, 20th edn. American Public Health Association, Washington, DC

    Google Scholar 

  • Baspinar AB, Turker M, Hocalar A, Ozturk I (2011) Biogas desulphurization at technical scale by lithotrophic denitrification: integration of sulphide and nitrogen removal. Process Biochem 46:916–922. doi:10.1016/j.procbio.2011.01.001

    Article  CAS  Google Scholar 

  • Cai J, Zheng P, Mahmood Q, Islam E, Hu BL, Wu DL (2007) Effects of loading rate and hydraulic residence time on anoxic sulfide biooxidation. J Zhejiang Univ Sci A 8:1149–1156. doi:10.1631/jzus.2007.A1149

    Article  CAS  Google Scholar 

  • Cai J, Zheng P, Mahmood Q (2008) Effect of sulfide to nitrate ratios on the simultaneous anaerobic sulfide and nitrate removal. Bioresource Technol 99:5520–5527. doi:10.1016/j.biortech.2007.10.053

    Article  CAS  Google Scholar 

  • Cai J, Zheng P, Mahmood Q (2010) Influence of transient pH and substrate shocks on simultaneous anaerobic sulfide and nitrate removal. J Hazard Mater 174:162–166. doi:10.1016/j.jhazmat.2009.09.031

    Article  CAS  Google Scholar 

  • Campos JL, Carvalho S, Portela R, Mosquera-Corral A, Méndez R (2008) Kinetics of denitrification using sulphur compounds: effects of S/N ratio, endogenous and exogenous compounds. Bioresource Technol 99:1293–1299. doi:10.1016/j.biortech.2007.02.007

    Article  CAS  Google Scholar 

  • Cirne DG, van der Zee FP, Fernandez-Polanco M, Fernandez-Polanco F (2008) Control of sulphide during anaerobic treatment of S-containing wastewaters by adding limited amounts of oxygen or nitrate. Rev Environ Sci Bio 7:93–105. doi:10.1007/s11157-008-9128-9

    Article  CAS  Google Scholar 

  • Garcia de Lomas J, Corzo A, Gonzalez JM, Andrades JA, Iglesias E, Montero MJ (2006) Nitrate promotes biological oxidation of sulfide in wastewaters: experiment at plant-scale. Biotechnol Bioeng 93:801–811

    Article  CAS  Google Scholar 

  • Garcia-de-Lomas J, Corzo A, Portillo MC, Gonzalez JM, Andrades JA, Saiz-Jimenez C, Garcia-Robledo E (2007) Nitrate stimulation of indigenous nitrate-reducing, sulfide-oxidising bacterial community in wastewater anaerobic biofilms. Water Res 41:3121–3131. doi:10.1016/j.watres.2007.04.004

    Article  CAS  Google Scholar 

  • Gevrey M, Dimopoulos I, Lek S (2003) Review and comparison of methods to study the contribution of variables in artificial neural network models. Ecol Model 160:249–264. doi:10.1016/S0304-3800(02)00257-0

    Article  Google Scholar 

  • Jin RC, Zheng P (2009) Kinetics of nitrogen removal in high rate anammox upflow filter. J Hazard Mater 170:652–656. doi:10.1016/j.jhazmat.2009.05.016

    Article  CAS  Google Scholar 

  • Jin RC, Yang GF, Yu JJ, Zheng P (2012) The inhibition of the anammox process: a review. Chem Eng J 197:67–79. doi:10.1016/j.cej.2012.05.014

    Article  CAS  Google Scholar 

  • Kundu P, Debsarkar A, Mukherjee S, Kumar S (2014) Artificial neural network modelling in biological removal of organic carbon and nitrogen for the treatment of slaughterhouse wastewater in a batch reactor. Environ Technol 35:1296–1306. doi:10.1080/09593330.2013.866698

    Article  CAS  Google Scholar 

  • Mahmood Q, Zheng P, Cai J, Hayat Y, Hassan MF, Wu DL, Hu BL (2007a) Sources of sulfide in waste streams and current biotechnologies for its removal. J Zhejiang Univ Sci A 8:1126–1140. doi:10.1631/jzus.2007.A1126

    Article  CAS  Google Scholar 

  • Mahmood Q, Zheng P, Cai J, Wu D, Hu B, Li J (2007b) Anoxic sulfide biooxidation using nitrite as electron acceptor. J Hazard Mater 147:249–256. doi:10.1016/j.jhazmat.2007.01.002

    Article  CAS  Google Scholar 

  • Meighani HM, Dehghani A, Rekabdar F, Hemmati M, Goodarznia I (2013) Artificial intelligence vs. classical approaches: a new look at the prediction of flux decline in wastewater treatment. Desalin Water Treat 51:7476–7489. doi:10.1080/19443994.2013.773861

    Article  CAS  Google Scholar 

  • Midha V, Jha MK, Dey A (2013) Neural network prediction of fluidized bed bioreactor performance for sulfide oxidation. Korean J Chem Eng 30:385–391. doi:10.1007/s11814-012-0128-7

    Article  CAS  Google Scholar 

  • Moraes BS, Souza TSO, Foresti E (2012) Effect of sulfide concentration on autotrophic denitrification from nitrate and nitrite in vertical fixed-bed reactors. Process Biochem 47:1395–1401. doi:10.1016/j.procbio.2012.05.008

    Article  CAS  Google Scholar 

  • Mu Y, Yu HQ (2007) Simulation of biological hydrogen production in a UASB reactor using neural network and genetic algorithm. Int J Hydrogen Energ 32:3308–3314. doi:10.1016/j.ijhydene.2007.05.021

    Article  CAS  Google Scholar 

  • Mullai P, Arulselvi S, Ngo HH, Sabarathinam PL (2011) Experiments and ANFIS modelling for the biodegradation of penicillin-G wastewater using anaerobic hybrid reactor. Bioresource Technol 102:5492–5497. doi:10.1016/j.biortech.2011.01.085

    Article  CAS  Google Scholar 

  • Mustafa YA, Jaid GM, Alwared AI, Ebrahim M (2014) The use of artificial neural network (ANN) for the prediction and simulation of oil degradation in wastewater by AOP. Environ Sci Pollut R 21:7530–7537. doi:10.1007/s11356-014-2635-z

    Article  CAS  Google Scholar 

  • Nemati M, Jenneman GE, Voordouw G (2001) Mechanistic study of microbial control of hydrogen sulfide production in oil reservoirs. Biotechnol Bioeng 74:424–434. doi:10.1002/bit.1133

    Article  CAS  Google Scholar 

  • Olden JD, Joy MK, Death RG (2004) An accurate comparison of methods for quantifying variable importance in artificial neural networks using simulated data. Ecol Model 178:389–397. doi:10.1016/j.ecolmodel.2004.03.013

    Article  Google Scholar 

  • Pikaar I, Rozendal RA, Yuan Z, Keller J, Rabaey K (2011) Electrochemical sulfide removal from synthetic and real domestic wastewater at high current densities. Water Res 45:2281–2289. doi:10.1016/j.watres.2010.12.025

    Article  CAS  Google Scholar 

  • Shi Y, Zhao XT, Zhang YM, Ren NQ (2009) Back propagation neural network (BPNN) prediction model and control strategies of methanogen phase reactor treating traditional Chinese medicine wastewater (TCMW). J Biotechnol 144:70–74. doi:10.1016/j.jbiotec.2009.08.014

    Article  CAS  Google Scholar 

  • Tang K, Baskaran V, Nemati M (2009) Bacteria of the sulphur cycle: an overview of microbiology, biokinetics and their role in petroleum and mining industries. Biochem Eng J 44:73–94. doi:10.1016/j.bej.2008.12.011

    Article  CAS  Google Scholar 

  • Wang AJ, Du DZ, Ren NQ, van Groenestijn JW (2005) An innovative process of simultaneous desulfurization and denitrification by Thiobacillus denitrificans. J Environ Sci Health A Tox Hazard Subst Environ Eng 40:1939–1949. doi:10.1080/10934520500184590

    Article  CAS  Google Scholar 

  • Wang A, Liu C, Han H, Ren N, Lee DJ (2009) Modeling denitrifying sulfide removal process using artificial neural networks. J Hazard Mater 168:1274–1279. doi:10.1016/j.jhazmat.2009.03.006

    Article  CAS  Google Scholar 

  • Yue ZB, Yu HQ, Harada H, Li YY (2007) Optimization of anaerobic acidogenesis of an aquatic plant, Canna indica L., by rumen cultures. Water Res 41:2361–2370. doi:10.1016/j.watres.2007.02.031

    Article  CAS  Google Scholar 

  • Zhang B, Zhang J, Yang Q, Feng C, Zhu Y, Ye Z, Ni J (2012) Investigation and optimization of the novel UASB–MFC integrated system for sulfate removal and bioelectricity generation using the response surface methodology (RSM). Bioresource Technol 124:1–7. doi:10.1016/j.biortech.2012.08.045

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors wish to thank the National Natural Science Foundation of China (No. 51278457) and the Special Foundation of Young Scientists of Zhejiang Gongshang University (QZ11-7) for financial support of this study.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jing Cai or Ping Zheng.

Additional information

Responsible editor: Michael Matthies

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cai, J., Zheng, P., Qaisar, M. et al. Prediction and quantifying parameter importance in simultaneous anaerobic sulfide and nitrate removal process using artificial neural network. Environ Sci Pollut Res 22, 8272–8279 (2015). https://doi.org/10.1007/s11356-014-3976-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-014-3976-3

Keywords

Navigation