Skip to main content
Log in

Evaluation of arsenic trioxide genotoxicity in wheat seedlings using oxidative system and RAPD assays

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Arsenic is a metalloid that is toxic to living organisms. It is known that high concentration of arsenic causes toxic damage to cells and tissues of plants. While the toxic effect of arsenic is known, limited efforts have been made to study its genotoxic effect on the crops. In the present study, effects of arsenic trioxide (As2O3) on seed germination, root length, reactive oxygen species (ROS), lipid peroxidation (malondialdehyde (MDA)), and activities of antioxidant enzymes, as well as DNA in wheat seedlings were investigated. Seedlings were exposed to different (10 to 40 mg/L) As2O3 concentrations for 7 days. Seed germination and root elongation decreased with increase of As2O3 concentration. The values of hydrogen peroxide (H2O2), superoxide anion (O2 ·−), and MDA contents significantly increased by As2O3 concentrations. The highest values for H2O2, O2 ·−, and MDA were obtained in 40 mg/L treated wheat seedling. A significant increase of peroxidase (POX) and catalase (CAT) activity in seedlings were observed with increased concentration of As2O3, then decreased when reaching a value of 40 mg/L, whereas the activities of superoxide dismutase (SOD) were gradually enhanced with increasing As2O3 concentration. Alterations of DNA in wheat seedlings were detected using randomly amplified polymorphic DNA (RAPD) technique. The changes occurring in RAPD profiles of seedlings following As2O3 treatment included loss of normal bands and appearance of new bands in comparison to that of control seedlings. The results of our study showed that As2O3 induced DNA damage in a dose-dependent meaner, and the root cells of wheat studied showed a defense against As2O3-induced oxidative stress by enhancing their antioxidant activities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Agarwal S, Pandey V (2004) Antioxidant enzyme responses to NaCl stress in Cassia angustifoli. Biol Plant 48:555–560

    Article  CAS  Google Scholar 

  • Aksakal O (2013) Assessment of paraquat genotoxicity on barley (Hordeum vulgare L.) seedlings using molecular and biochemical parameters. Acta Physiol Plant 35:2281–2287

    Article  CAS  Google Scholar 

  • Aksakal O, Aygun-Erturk F, Sunar S, Bozari S, Agar G (2013) Assessment of genotoxic effects of 2,4-dichlorophenoxyacetic acid on maize by using RAPD analysis. Ind Crop Prod 42:552–557

    Article  CAS  Google Scholar 

  • Asada K (1992) Ascobate peroxidase a hydrogen peroxide scavenging enzyme in plants. Physiol Plant 85:235–241

    Article  CAS  Google Scholar 

  • Bozari S, Aksakal O (2012) Application of random amplified polymorphic DNA (RAPD) to detect genotoxic effect of trifluralin on maize (Zea mays). Drug Chem Toxicol 36(2):163–169

    Article  Google Scholar 

  • Cao H, Jiang Y, Chen J, Zhang H, Huang W, Li L, Zhang W (2009a) Arsenic accumulation in Scutellaria baicalensis Georgi and its effects on plant growth and pharmaceutical components. J Hazard Mater 171:508–513

    Article  CAS  Google Scholar 

  • Cao Q, Hu Q-H, Baisch C, Khan S, Zhu Y-G (2009b) Arsenate toxicity for wheat and lettuce in six Chinese soils with different properties. Environ Toxicol Chem 28:1946–1950

    Article  CAS  Google Scholar 

  • Cenkci S, Cigerci IH, Yildiz M, Ozay C, Bozdag A, Terzi H (2010) Lead contamination reduces chlorophyll biosynthesis and genomic template stability in Brassica rapa L. Environ Exp Bot 67:467–473

    Article  CAS  Google Scholar 

  • D’Souza MR, Devaraj VR (2013) Mercury-induced changes in growth and oxidative metabolism of field bean (Dolichos lablab). Res J Chem Environ 17(9):86–93

    Google Scholar 

  • Dho S, Camusso W, Mucciarelli M, Fusconi A (2010) Arsenate toxicity on the apices of Pisum sativum L. seedling roots: effect on mitotic activity, chromatin integrity and microtubules. Environ Exp Bot 69:17–23

    Article  CAS  Google Scholar 

  • Elstner EF, Heupel A (1976) Formation of hydrogen peroxide by isolated cell walls from horseradish. Planta 130:175–180

    Article  CAS  Google Scholar 

  • Gupta M, Sharma P, Sarin NB, Sinha AK (2009) Differential response of arsenic stress in two varieties of Brassica juncea L. Chemosphere 74:1201–1208

    Article  CAS  Google Scholar 

  • Hasanuzzaman M, Fujita M (2013) Exogenous sodium nitroprusside alleviates arsenic-induced oxidative stress in wheat (Triticum aestivum L.) seedlings by enhancing antioxidant defense and glyoxalase system. Ecotoxicology 22:584–596

    Article  CAS  Google Scholar 

  • Havir EA, McHale NA (1987) Biochemical and development characterization of multiple forms of catalase in tobacco leaves. Plant Physiol 84:450–455

    Article  CAS  Google Scholar 

  • He YL, Liu YL, Cao WX, Huai MF, Xu BG, Huang BG (2005) Effects of salicylic acid on heat tolerance associated with antioxidant metabolism in Kentucky bluegrass. Crop Sci 45:988–995

    Article  CAS  Google Scholar 

  • Heath RL, Packer L (1968) Photo peroxidation in isolated chloroplast I. Kinetics and stoichiometry of fatty acid peroxidation. Arch Biochem Biophys 25:189–198

    Article  Google Scholar 

  • Holgrem A (2003) Redox regulation of genes and cell function. In: Cutler RG, Rodriguez H (eds) Critical review of oxidative stress and aging 2:102–111.

  • Jin JW, Xu YF, Huang YF (2010) Protective effect of nitric oxide against arsenic induced oxidative damage in tall fescue leaves. Afr J Biotechnol 9:1619–1627

    CAS  Google Scholar 

  • Khan I, Ahmad A, Iqbal M (2009) Modulation of antioxidant defence system for arsenic detoxification in Indian mustard. Ecotoxicol Environ Saf 72:626–634

    Article  CAS  Google Scholar 

  • Lai Y, Zhao W, Chen C, Wu M, Zhang Z (2011) Role of DNA polymerase beta in the genotoxicity of arsenic. Environ Molecular Mutagen 52:460–468

    Article  CAS  Google Scholar 

  • Li C-X, Feng S-L, Shao Y, Jiang L-N, Yang X-U, Hou X-L (2007) Effects of arsenic on seed germination and physiological activities of wheat seedlings. J Environ Sci 19:725–732

    Article  CAS  Google Scholar 

  • Lin A, Zhang X, Zhu Y-G, Zhao F-J (2008) Arsenate-induced toxicity: effects on antioxidative enzymes and DNA damage in Vicia faba. Environ Toxicol Chem 27:413–419

    Article  CAS  Google Scholar 

  • Liu W, Yang YS, Zhou QX, Xie LJ, Li P, Sun T (2007) Impact assessment of cadmium contamination on rice (Oryza sativa L.) seedlings at molecular and population levels using multiple biomarkers. Chemosphere 67:1155–1163

    Article  CAS  Google Scholar 

  • Mandal BK, Suziki KT (2002) Arsenic round the world: a review. Talanta 58:201–235

    Article  CAS  Google Scholar 

  • Mittler R (2002) Oxidative stress, antioxidants, and stress tolerance. Trends Plant Sci 7:405–410

    Article  CAS  Google Scholar 

  • Mohan BS, Hosetti BB (1997) Potential phytotoxicty of lead and cadmium to Lemna minor grown in sewage stabilization ponds. Environ Pollut 98:233–238

    Article  CAS  Google Scholar 

  • Moreno-Jimenez E, Esteban E, Carpena-Ruiz RO, Penasola JM (2009) Arsenic-and mercury induced phytotoxicity in the Mediterranean shrubs Pistacia lentiscus and Tamarix gallica grown in hydroponic culture. Ecotox Environ Safe 72:1781–1789

    Article  CAS  Google Scholar 

  • Ozturk F, Duman F, Leblebici Z, Temizgul R (2010) Arsenic accumulation and biological responses of watercress (Nasturtium officinale) exposed to arsenite. Environ Exp Bot 69:167–174

    Article  CAS  Google Scholar 

  • Patra M, Bhowmik N, Bandopadhyay B, Sharma A (2004) Comparison of mercury, lead and arsenic with respect to genotoxic effects of plant systems and the development of genetic tolerance. Environ Exp Bot 52:199–223

    Article  CAS  Google Scholar 

  • Pavlik M, Pavlikova D, Staszkova L, Neuberg M, Kaliszova R, Szakova J, Tlustos P (2010) The effect of arsenic contamination on amino acids metabolism in Spinacia oleracea L. Ecotox Environ Safe 73:1309–1313

    Article  CAS  Google Scholar 

  • Radic S, Cvjetko P, Glavas K, Roje V, Pevalek-Kozlina B, Pavlica M (2009) Oxidative stress and DNA damage in broad bean (Vicia faba L.) seedlings induced by thallium. Environ Toxicol Chem 28:189–196

    Article  CAS  Google Scholar 

  • Saha GC, Ashraf AM (2007) Dynamics of arsenic in agricultural soils irrigated with arsenic contaminated groundwater in Bangladesh. Sci Total Environ 379:180–189

    Article  CAS  Google Scholar 

  • Shi H, Shi X, Liu KJ (2004) Oxidative mechanism of arsenic toxicity and carcinogenesis. Mol Cell Biochem 255:67–78

    Article  CAS  Google Scholar 

  • Singh HP, Kaur S, Batish DR, Sharma VP, Sharma N, Kohli RK (2009) Nitric oxide alleviates arsenic toxicity by reducing oxidative damage in the roots of Oryza sativa (rice). Nitric Oxide 20:289–297

    Article  CAS  Google Scholar 

  • Singh VP, Srivastava PK, Prasad SM (2013) Nitric oxide alleviates arsenic-induced toxic effects in ridged Luffa Seedlings. Plant Physiol Biochem 71:155–163

    Article  CAS  Google Scholar 

  • Sinha S, Sinam G, Mishra RK, Mallick S (2010) Metal accumulation, growth, antioxidants and oil yields of Brassica juncea L. exposed to different metals. Ecotox Environ Safe 73:1352–1361

    Article  CAS  Google Scholar 

  • Streb P, Michael-Knauf A, Feierabend J (1993) Preferential photoinactivation of catalase and photoinhibition of photosystem II are common early symptoms under various osmotic and chemical stress conditions. Pysiol Planta 88:590–598

    Article  CAS  Google Scholar 

  • Talukdar D (2013) Arsenic-induced oxidative stress in the common bean legume, Phaseolus vulgaris L. seedlings and its amelioration by exogenous nitric oxide. Physiol Mol Biol Plants 19:69–79

    Article  CAS  Google Scholar 

  • Wang TS, Hsu TY, Chung CH, Wang AS, Bau DT, Jan KY (2001) Arsenite induces oxidative DNA adducts and DNA-protein cross-links in mammalian cells. Free Radic Biol Med 31:321–330

    Article  CAS  Google Scholar 

  • World Health Organization (WHO) (2001) Arsenic in drinking water, revised. http://www.who.int/mediacentre/facesheetsfs210/en/print.html.

  • Xue-mei Q, Pei-jun L, Wan L, Li-jing X (2006) Multiple biomarkers response in maize (Zea mays L.) during exposure to Copper. J Environ Sci 18(6):1182–1188

    Article  Google Scholar 

  • Ye Y, Tam NFY, Wong YS, Lu CY (2003) Growth and physiological responses of two mangrove species (Bruguiera gymnorrhiza and Kandelia candel) to waterlogging. Environ Exp Bot 49:209–221

    Article  Google Scholar 

  • Yi H, Si L (2007) Vicia root micronucleus and sister-chromatid exchange assays on the genotoxicity of selenium compounds. Mutat Res-Gen Tox En 630:92–96

    Article  CAS  Google Scholar 

  • Yi H, Wu L, Jiang L (2007) Genotoxicity of arsenic evaluated by Allium-root micronucleus assay. Sci Total Environ 383:232–236

    Article  CAS  Google Scholar 

  • Zhiyia R, Haowen Y (2004) A method for genotoxicity detection using random amplified polymorphism DNA with Danio rerio. Ecotox Environ Safe 58:96–103

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ozkan Aksakal.

Additional information

Responsible editor: Philippe Garrigues

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aksakal, O., Esim, N. Evaluation of arsenic trioxide genotoxicity in wheat seedlings using oxidative system and RAPD assays. Environ Sci Pollut Res 22, 7120–7128 (2015). https://doi.org/10.1007/s11356-014-3932-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-014-3932-2

Keywords

Navigation