Skip to main content
Log in

Leaching techniques for saline wastes composts used as growing media in organic agriculture: assessment and modelling

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

The purpose of this work was to examine solute release by the effect of leaching of a saline compost with two main objectives: (1) to identify the most efficient method for this purpose, in order to minimize the environmental impact of this process in terms of water consumption and (2) to study the composition of the leachates to manage them properly and avoid possible contamination. A laboratory method involving column leaching with distilled water (CL) and two field methods involving saturation leaching (SL) and drip leaching (DL) were compared to this end. In order to more accurately assess nutrient release and compare the three leaching techniques, the cumulative amounts of ions leached were processed by using an exponential growth model. All target ions fitted properly, and so did the curve for the ions as a whole. Salts were removed mainly by effect of the leaching of major ions in the substrate (Na+, Cl, inorganic N, SO4 2– and K+). SL and CL proved similarly efficient and reduced the salt content of the substrate to an electrical conductivity below 2 dS m–1 in the saturation extract, which is the optimum level for nursery crops. By contrast, the DL method provided poor results: salt contents were reduced to an electrical conductivity of only 8 dS m–1 in the saturation extract, so the resulting substrate can only be useful to grow highly salt-tolerant crops.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • 2007/64/EC Commission Decision (2007) Establishing revised ecological criteria and the related assessment and verification requirements for the award of the community eco-label to growing media. Off J Eur Communities L32:137–143

    Google Scholar 

  • Abad M, Martínez-Herrero PF, Martínez-García MD, Martínez-Corts J (1992) Evaluación agronómica de los sustratos de cultivo. Actas de Horticultura 11:141–154

    Google Scholar 

  • Abad M, Noguera P, Burés S (2001) National inventory of organic wastes for use as growing media for ornamental potted plant production: case study in Spain. Bioresour Technol 77:197–200. doi:10.1016/S0960-8524(00)00152-8

    Article  CAS  Google Scholar 

  • Atikpo M, Onokpise O, Abazinge M, Louime C, Dzomeku M, Boateng L, Awumbilla B (2008) Sustainable mushroom production in Africa: a case study in Ghana. Afr J Biotechnol 7:249–253

    Google Scholar 

  • Ayers RS, Westcot DW (1985) Water quality for agriculture. FAO Irrigation and Drainage Paper 29

  • Burés S (1997) Sustratos. Ediciones Agrotécnicas, Madrid

    Google Scholar 

  • Buyuksonmez F, Rynk R, Fornshell G, Hess TF (1998) Composting characteristics of trout manure. Abstract of presentation at Aquaculture ‘98, Las Vegas, Nevada, USA, February 15–19

  • Canet AR (2008) Aplicaciones del compost en agricultura ecológica. In: Moreno Casco J, Moral Herrero R (eds) Compostaje. Mundi Prensa, Madrid, pp 379–396. doi:10.1016/j.wasman.2006.01.029

    Google Scholar 

  • Chinsamy M, Kulkarni MG, Van Staden J (2013) Garden-waste-vermicompost leachate alleviates salinity stress in tomato seedlings by mobilizing salt tolerance mechanisms. Plant Growth Regul 71(1):1–7. doi:10.1007/s10725-013-9807-6

    Article  Google Scholar 

  • Chong C (2005) Experiences with wastes and composts in nursery substrates. HortTechnology 15:739–747

    Google Scholar 

  • Eyras MC, Rostagno CM, Defossé GE (1998) Biological evaluation of seaweed composting. Compost Sci Util 6(4):74–81

    Article  Google Scholar 

  • Eyras MC, Defosse GE, Dellatorrey F (2008) Seaweed compost as an amendment for horticultural soils in Patagonia. Argentina Compost Sci Util 16(2):119–124

    Article  Google Scholar 

  • Fornes F, Carrión C, García-de la Fuente R, Puchades R, Abad M (2010) Leaching composted lignocellulosic wastes to prepare container media: feasibility and environmental concerns. J Environ Manag 91(8):1747–1755. doi:10.1016/j.jenvman.2010.03.017

    Article  CAS  Google Scholar 

  • Gils J, Chong C, Lumis G (2005) Response of container-grown ninebark to crude and nutrient-enriched recirculating compost leachates. HortSci 40(5):1507–1512

    CAS  Google Scholar 

  • Guo M, Chorover J (2004) Solute release from weathering of spent mushroom substrate under controlled conditions. Compost Sci Util 12:225–234

    Article  Google Scholar 

  • Hernández-Apaolaza L, Gascó AM, Gascó JM, Guerrero F (2005) Reuse of waste materials as growing media for ornamental plants. Bioresour Technol 96:125–131. doi:10.1016/j.biortech.2004.02.028

    Article  Google Scholar 

  • Hoitink HAJ, Boehm MJ (1999) Biocontrol within the context of soil microbial communities: a substrate-dependent phenomenon. Ann Rev Phytopathol 37(1):427–446. doi:10.1146/annurev.phyto.37.1.427

    Article  CAS  Google Scholar 

  • Illera-Vives M, Seoane Labandeira S, López-Mosquera ME (2013) Production of compost from marine waste: evaluation of the product for use in ecological agriculture. J Appl Phycol 1–9(5):1395–1403. doi:10.1007/s10811-013-9997-3

    Article  Google Scholar 

  • Jarecki MK, Chong C, Voroney RP (2005) Evaluation of compost leachates for plant growth in hydroponic culture. J Plant Nutr 28:651–667. doi:10.1081/PLN-200052639

    Article  CAS  Google Scholar 

  • Jarecki MK, Chong C, Voroney RP (2012) Evaluation of compost leachate for growing nursery trees on a waste-rehabilitated field site. Compost Sci Util 20(3):171–180. doi:10.1080/1065657X.2012.10737043

    Article  CAS  Google Scholar 

  • Khan W, Rayirath UP, Subramanian S, Jithesh MN, Rayorath P, Hodges DM, Critchley AT, Craigie JS, Norrie J, Prithiviraj B (2009) Seaweed extracts as biostimulants of plant growth and development. J Plant Growth Regul 28:386–399. doi:10.1007/s00344-009-9103-x

    Article  CAS  Google Scholar 

  • Liao PH, Jones L, Lau AK, Walkemeyer S, Egan B, Holbek N (1997) Composting of fish wastes in a full-scale invessel system. Bioresour Technol 59(2):163–168. doi:10.1016/S0960-8524(96)00153-8

    Article  CAS  Google Scholar 

  • Mazuela P, Salas MC, Urrestarazu M (2005) Vegetable waste compost as substrate for melon. Commun Soil Sci Plant Anal 36:1557–1572. doi:10.1081/CSS-200059054

    Article  CAS  Google Scholar 

  • Morand P, Briand X (1996) Excessive growth of macroalgae: a symptom of environmental disturbance. Bot Mar 39(1–6):491–516. doi:10.1515/botm. 1996.39.1-6.491

    CAS  Google Scholar 

  • Noguera P, Abad M, Puchades R, Maquieira A, Noguera V (2003) Influence of particle size on physical and chemical properties of coconut coir dust as container medium. Commun Soil Sci Plant Anal 34:593–605. doi:10.1081/CSS-120017842

    Article  CAS  Google Scholar 

  • Papafotiou M, Phsyhalou M, Kargas G, Chatzipavlidis I, Chronopoulos J (2004) Olive-mill wastes compost as growing medium component for the production of poinsettia. Sci Hortic 102:167–175. doi:10.1016/j.scienta.2003.11.016

    Article  Google Scholar 

  • Raviv M (2005) Production of high-quality composts for horticultural purposes: a mini-review. HortTechnology 15:52–57

    Google Scholar 

  • Romero C, Ramos P, Costa C, Márquez MC (2013) Raw and digested municipal waste compost leachate as potential fertilizer: comparison with a commercial fertilizer. J Clean Prod 59:73–78. doi:10.1016/j.jclepro.2013.06.044

    Article  CAS  Google Scholar 

  • Scheuerell S, Mahaffee W (2002) Compost tea: principles and prospects for plant disease control. Compost Sci Util 31:3

    Google Scholar 

  • Stirk WA, Arthur GD, Lourens AF, Novák O, Strnad M, van Staden J (2004) Changes in cytokinin and auxin concentrations in seaweed concentrates when stored at an elevated temperature. J Appl Phycol 16:31–39. doi:10.1023/B:JAPH.0000019057.45363.f5

    Article  CAS  Google Scholar 

  • Strand L (1964) Numerical constructions of site-index curves. Forest Sci 10(4):410–414

    Google Scholar 

  • Tejada M, González JL, Hernández MT, García C (2008) Agricultural use of leachates obtained from two different vermicomposting processes. Bioresour Technol 29:6228–6232. doi:10.1016/j.biortech.2007.12.031

    Article  Google Scholar 

  • Vendrame WA, Maguire I, Moore KK (2005) Growth of selected bedding plants as affected by different compost percentages. Proc Fla State Hort Soc 118:368–371

    Google Scholar 

  • Wang YT, Blessington TM (1990) Growth and interior performance of poinsettia in media containing composted cotton burrs. HortSci 25:407–408

    Google Scholar 

Download references

Acknowledgments

The authors are grateful to the Xunta de Galicia for funding this study (Projects PGIDT05TAM097E and 09MRU016291PR) and for the postgraduate grant awarded to Marta Illera-Vives. They also thank Pescados Rubén S.L. for supplying some of the materials used to produce the composts and for their helpful collaboration throughout the project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marta Illera-Vives.

Additional information

Responsible editor: Philippe Garrigues

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Illera-Vives, M., López-Mosquera, M.E., Salas-Sanjuan, M.d.C. et al. Leaching techniques for saline wastes composts used as growing media in organic agriculture: assessment and modelling. Environ Sci Pollut Res 22, 6854–6863 (2015). https://doi.org/10.1007/s11356-014-3897-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-014-3897-1

Keywords

Navigation