Skip to main content
Log in

Oxidative stress and brain mitochondria swelling induced by endosulfan and protective role of quercetin in rat

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

The neurological damages resulted by endosulfan poisoning is not completely elucidated, especially in cellular organelles such as mitochondria. In the present study, the pro-oxidant effect of endosulfan on brain mitochondria was first investigated. Gavages of endosulfan into rats at the dose of 2 mg/kg induced oxidative stress in this organelle since it provokes a significant reduction of catalase (CAT), superoxide dismutase (SOD), and glutathione (GSH) level. In addition, a significant increase in mitochondria swelling and malondialdehyde (MDA) levels were observed in neuronal mitochondria, indicating clearly an intense peroxidation within mitochondria. Second, the protective effect of quercetin (QE) (10 mg/kg) against endosulfan-induced oxidative stress in mitochondria was also assessed. Indeed, the pretreatment of rats with QE protects brain mitochondria from oxidative stress, lipid peroxidation, and mitochondria swelling induced by endosulfan. The activities of antioxidant enzymes and the mitochondrial content of GSH and MDA were returned to control values. Thus, although endosulfan can have neurotoxic effects in brain rats, this toxicity can be prevented by quercetin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Ahmed S, Passos JF, Birket MJ, Beckmann T et al (2008) Telomerase does not counteract telomere shortening but protects mitochondrial function under oxidative stress. J Cell Sci 121:1046–1053

  • Assefa Z, Van Laethem A, Garmyn M, Agostinis P (2005) Ultraviolet radiation induced apoptosis in keratinocytes: on the role of cytosolic factors. Biochim Biophys Acta 1755:90–106

    CAS  Google Scholar 

  • ATSDR (Agency for Toxic Substances and Disease Register) (2013) Daft toxicological profile for endosulfan. U.S. Department of health and human services. http://www.atsdr.cdc.gov/ToxProfiles/tp41.pdf

  • Beauchamp C, Fridovich I (1971) Assay of superoxide dismutase. Anal Biochem 44:276–287

    Article  CAS  Google Scholar 

  • Cassarino DS, Bennett JP (1999) An evaluation of the role of mitochondria in neurodegenerative diseases: mitochondrial mutations and oxidative pathology, protective nuclear responses, and cell death in neurodegeneration. Brain Res Rev 29:1–25

    Article  CAS  Google Scholar 

  • Choi YJ, Kang JS, Park JH et al (2003) Polyphenolic flavonoids differ in their antiapoptotic efficacy in hydrogen peroxide treated human vascular endothelial cells. J Nutr 133:985–991

    CAS  Google Scholar 

  • Clairborne A (1985) Catalase activity. In: Greenwald RA (ed) CRC handbook of methods for oxygen radical research. CRC Press, Boca Raton, pp 283–284

    Google Scholar 

  • Di Monte DA, Chan P, Sandy MS (1992) Glutathione in Parkinson’s disease: a link between oxidative stress and mitochondrial damage? Ann Neurol 32:111–115

    Article  Google Scholar 

  • Ellman GL (1959) Tissue sulfhydryl groups. Arch Biochem Biophys 82:70–77

    Article  CAS  Google Scholar 

  • Emerit J, Edeas M, Bricaire F (2004) Neurodegenerative diseases and oxidative stress. Biomed Pharmacol 58:39–46

    Article  CAS  Google Scholar 

  • Fan Q, Huang CG, Jin Y, Feng B, Miao H, Li W et al (2005) Effects of shark hepatic stimulator substance on the function and antioxidant capacity of liver mitochondria in an animal model of acute liver injury. Acta Biochim Biophys Sin 37:507–514

    Article  Google Scholar 

  • Ferrali M, Signorini C, Ciccoli L et al (2000) Protection of erythrocytes against oxidative damage and autologous immunoglobulin G (IgG) binding by iron chelator fluor-benzoyl-pyridoxal hydrazone. Biochem Pharmacol 59:1365–1373

    Article  CAS  Google Scholar 

  • Franco R, Sanchez-Olea R, Reyes-Reyes EM, Panayiotidis MI (2009) Environmental toxicity, oxidative stress and apoptosis: menage a trois. Mutat Res 674:3–22

    Article  CAS  Google Scholar 

  • Halliwell B (2006) Oxidative stress and neurodegeneration: where are we now? J Neurochem 97:1634–1658

    Article  CAS  Google Scholar 

  • Jaswinder SB, Christopher AS (1997) Neurodegenerative disorders in humans: the role of glutathione in oxidative stress-mediated neuronal death. Brain Res Rev 25:335–358

    Article  Google Scholar 

  • Kaur P, Radotra B, Minz RW, Gill KD (2007) Impaired mitochondrial energy metabolism and neuronal apoptotic cell death after chronic dichlorvos (OP) exposure in rat brain. Neurotoxicology 28:1208–1219

    Article  CAS  Google Scholar 

  • Kebieche M, Lakroun Z, Lahouel M, Bouayed J, Meraihi Z, Souliman R (2009) Evaluation of epirubicin-induced acute oxidative stress toxicity in rat liver cells and mitochondria, and the prevention of toxicity through quercetin administration. Exp Toxicol Pathol 61:161–167

    Article  CAS  Google Scholar 

  • Kebieche M, Lakroun Z, Mraïhi Z, Soulimani R (2011) Effet antidiabétogène et cytoprotecteur de l’extrait butanolique de Ranunculus repens L. et de la quercétine sur un modèle expérimental de diabète alloxanique. Phytothérapie 9:274–282

    Article  CAS  Google Scholar 

  • Kristal BS, Park BK, Yu BP (1996) 4-hydroxynonénal est un puissant inducteur de la transition de perméabilité mitochondriale. J Biol Chem 271:6033–6038

    Article  CAS  Google Scholar 

  • Lowry OH, Rosegrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the folin phenol reagent. J Biol Chem 193:265–275

    CAS  Google Scholar 

  • Merad-Boudia M, Nicole A, Santiard-Baron D, Saille C, Ceballos-Picot I (1998) Mitochondrial impairment as an early event in the process of apoptosis induced by glutathione depletion in neuronal cells: relevance to Parkinson's disease. Biochem Pharmacol 56:645–655

    Article  CAS  Google Scholar 

  • Mytilineou C, Kramer BC, Yabut GA (2002) Glutathione depletion and oxidative stress. Parkinsonism Relat Disord 8:385–387

    Article  Google Scholar 

  • Ng CH, Mok SZ, Koh C, Ouyang X, Fivaz ML, Tan EK, Dawson VL, Dawson TM, Yu F, Lim KL (2009) Parkin protège contre LRRK2 G2019S induite mutant-dopaminergique neurodégénérescence chez la drosophile. J Neurosci 29:11257–11262

    Article  CAS  Google Scholar 

  • Ohkawa H, Ohishi N, Yagi K (1979) Assay of lipid peroxides in animal tissue by thiobarbituric reaction. Anal Biochem 95:351–358

    Article  CAS  Google Scholar 

  • POPRC (2008) Fourth meeting of the persistent organic pollutants review committee. Geneva, Switzerland 13–17 October. http://chm.pops.int/TheConvention/POPsReviewCommittee/Meetings/POPRC4/ResponsesonAnnexEEndosulfan/tabid/460/Default.aspx

  • Rice-Evans CA, Miller NJ, Bolwell PG et al (1995) The relative antioxidant activities of plant derived polyphenolic flavonoids. Free Radic Res 22:375–383

    Article  CAS  Google Scholar 

  • Rustin P, Chretien D, Bourgeron T, Gerard B et al (1994) Biochemical and molecular investigation in respiratory chain deficiencies. Clin Chem Acta 228:35–51

    Article  CAS  Google Scholar 

  • Sechi G, Deledda MG, Bua G, Satta WM et al (1996) Reduced intravenous glutathione in the treatment of early Parkinson 's disease. Prog Neuropsychopharmacol Biol Psychiatry 20:1159–1170

    Article  CAS  Google Scholar 

  • Shi H, Hudson LG, Liu KJ (2004) Oxidative stress and apoptosis in metal ion induced carcinogenesis. Free Radic Biol Med 37:582–593

    Article  CAS  Google Scholar 

  • Silva MH, Beauvais SL (2009) Human health risk assessment of endosulfan. I: toxicology and hazard identification. Regul Toxicol Pharmacol 56:4–17

    Article  Google Scholar 

  • Silva MH, Gammon D (2009) An assessment of the developmental, reproductive, and neurotoxicity of endosulfan. Birth Defects Res B Dev Reprod Toxicol 86:1–28

    Article  CAS  Google Scholar 

  • Sunitha S, Murthy K, Mahmood R (2012) Characterization of endosulfan and endosulfan sulphate degradation by strains of Pseudomonas putida. Int J Environ Sci 3:859–869

    Google Scholar 

  • Uttara B, Singh AV, Zamboni P et al (2009) Oxidative stress and neurodegenerative diseases: a review of upstream and downstream antioxidant therapeutic options. Current Neuropharmacology 7:65–74

    Article  CAS  Google Scholar 

  • WHO (2002) International programme on chemical safety (IPCS). Environmental Health Criteria, vol 79. World Health Organization, Geneva, p 58

  • Zerouali E, Salghi R, Hormatallah Belkheir Hammouti A, Bazzi L, Zaafarani Z (2005) Pesticide residues in tomatoes grown in greenhouse in Souss Massa Valley in Morocco and dissipation of endosulfan and deltamethrin. Fresenius Environmental Bulletin 15:267–271

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamed Kebieche.

Additional information

Responsible editor: Philippe Garrigues

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lakroun, Z., Kebieche, M., Lahouel, A. et al. Oxidative stress and brain mitochondria swelling induced by endosulfan and protective role of quercetin in rat. Environ Sci Pollut Res 22, 7776–7781 (2015). https://doi.org/10.1007/s11356-014-3885-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-014-3885-5

Keywords

Navigation