Skip to main content

Advertisement

Log in

Effect of chlorine and temperature on free-living protozoa in operational man-made water systems (cooling towers and hot sanitary water systems) in Catalonia

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

In recent decades, free-living protozoa (FLP) have gained prominence as the focus of research studies due to their pathogenicity to humans and their close relationship with the survival and growth of pathogenic amoeba-resisting bacteria. In the present work, we studied the presence of FLP in operational man-made water systems, i.e. cooling towers (CT) and hot sanitary water systems (HSWS), related to a high risk of Legionella spp. outbreaks, as well as the effect of the biocides used, i.e. chlorine in CT and high temperature in HSWS, on FLP. In CT samples, high-chlorine concentrations (7.5 ± 1.5 mg chlorine L−1) reduced the presence of FLP by 63.8 % compared to samples with low-chlorine concentrations (0.04 ± 0.08 mg chlorine L−1). Flagellates and amoebae were observed in samples collected with a level of 8 mg chlorine L−1, which would indicate that some FLP, including the free-living amoeba (FLA) Acanthamoeba spp., are resistant to the discontinuous chlorine disinfection method used in the CT studied. Regarding HSWS samples, the amount of FLP detected in high-temperatures samples (53.1 ± 5.7 °C) was 38 % lower than in low-temperature samples (27.8 ± 5.8 °C). The effect of high temperature on FLP was chiefly observed in the results obtained by the culture method, in which there was a clear reduction in the presence of FLP at temperatures higher than 50 °C, but not in those obtained by PCR. The findings presented here show that the presence of FLP in operational man-made water systems should be taken into account in future regulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215(3):403–410. doi:10.1016/S0022-2836(05)80360-2

    Article  CAS  Google Scholar 

  • Barbeau J, Buhler T (2001) Biofilms augment the number of free-living amoebae in dental unit waterlines. Res Microbiol 152(8):753–760. doi:10.1016/S0923-2508(01)01256-6

    Article  CAS  Google Scholar 

  • Behets J, Declerck P, Delaedt Y, Verelst L, Ollevier F (2007) Survey for the presence of specific free-living amoebae in cooling waters from Belgian power plants. Parasitol Res 100(6):1249–1256. doi:10.1007/s00436-006-0399-1

    Article  Google Scholar 

  • Boletín Oficial del Estado (2003) Real Decreto 140/2003 por el que se establecen los criterios sanitarios de la calidad del agua de consumo humano. BOE 45:7228–7245

    Google Scholar 

  • Cateau E, Delafont V, Hechard Y, Rodier MH (2014) Free-living amoebae: what part do they play in healthcare-associated infections? J Hosp Infect 87:131–140. doi:10.1016/j.jhin.2014.05.001

    Article  CAS  Google Scholar 

  • Cervero-Aragó S, Rodríguez-Martínez S, Canals O, Salvadó H, Araujo R (2013) Effect of thermal treatment on free-living amoeba inactivation. J Appl Microbiol 116(3):728–736. doi:10.1111/jam.12379

    Article  Google Scholar 

  • Coloun C, Collignon A, McDonnell G, Thomas V (2010) Resistance of Acanthamoeba cysts to disinfection treatments used in health care settings. J Clin Microbiol 48(8):2689–2697. doi:10.1128/JCM. 00309-10

    Article  Google Scholar 

  • Delafont V, Brouke A, Bouchon D, Moulin L, Héchard Y (2013) Microbiome of free-living amoebae isolated from drinking water. Water Res 47(19):6958–6965. doi:10.1016/j.watres.2013.07.047

    Article  CAS  Google Scholar 

  • Fernández-Galiano D (1994) The ammoniacal silver carbonate method as a general procedure in the study of protozoa from sewage (and other) waters. Water Res 28(2):495–496. doi:10.1016/0043-1354(94)90288-7

    Article  Google Scholar 

  • Fields BS, Shotts EB Jr, Feeley JC, Gorman GW, Martin WT (1984) Proliferation of Legionella pneumophila as an intracellular parasite of the ciliated protozoan Tetrahymena pyriformis. Appl Environ Microbiol 47(3):467–471

    CAS  Google Scholar 

  • Foissner W (1993) Colpodea. Gustav Fischer Verlag, Stuttgart

    Google Scholar 

  • Greub G, Raoult D (2004) Microorganisms resistant to free-living amoebae. Clin Microbiol Rev 17(2):413–433. doi:10.1128/CMR. 17.2.413-433.2004

    Article  Google Scholar 

  • International Organization for Standardization. 2005. Water quality - General guidance on the enumeration of micro-organisms by culture. ISO 8199:2005

  • Kim BR, Anderson JE, Mueller SA, Gaines WA, Kendall AM (2002) Literature review—efficacy of various disinfectants against Legionella in water systems. Water Res 36(18):4433–4444. doi:10.1016/S0043-1354(02)00188-4

    Article  CAS  Google Scholar 

  • Kuchta JM, Navratil JS, Shepherd ME, Wadowsky RM, Dowling JN, States SJ, Yee RB (1993) Impact of chlorine and heat on the survival of Hartmannella vermiformis and subsequent growth of Legionella pneumophila. Appl Environ Microbiol 59(12):4096–4100

    CAS  Google Scholar 

  • Lasheras A, Boulestreau H, Rogues AM, Ohayon-Courtes C, Labadie JC, Gachie JP (2006) Influence of amoebae and physical and chemical characteristics of water on presence and proliferation of Legionella species in hospital water systems. Am J Infect Control 34(8):520–525. doi:10.1016/j.ajic.2006.03.007

    Article  Google Scholar 

  • Lee JJ, Soldo AT (Eds.) (1992) Protocols in protozoology. AllenPress, Inc. Lawrence, Kansas

  • Lee S, Leedale GF, Bradbury P (Eds.) (2000) The illustrated guide to the protozoa. In: Society of Protozoologists, second ed., vol. I and II. Allen Press, Inc, Lawrence, Kansas

  • Loret JF, Greub G (2010) Free-living amoebae: biological by-passes in water treatment. Int J Hyg Environ Health 213(3):167–175. doi:10.1016/j.ijheh.2010.03.004

    Article  CAS  Google Scholar 

  • Ménard-Szczebara F, Berthelot N, Cavereau D, Oberti S, Héchard Y, Sarroca V, Rivière D, Mazoua S (2008) Ecology of free-amoebae in real in-house water networks. Eur J Water Qual 39:65–76 (in French)

    Article  Google Scholar 

  • Mogoa E, Bodet C, Legube B, Héchard Y (2010) Acanthamoeba castellanii: cellular changes induced by chlorination. Exp Parasitol 126(1):97–102. doi:10.1016/j.exppara.2009.12.005

    Article  CAS  Google Scholar 

  • Page FC (1988) A New Key to Freshwater and Soil Gymnamoebae with Instructions for Culture. Freshwater Biological Association, Ambleside

    Google Scholar 

  • Paszko-Kolva C, Yamamoto H, Shahamat M, Sawyer TK, Morris G, Colwell RR (1991) Isolation of amoebae and Pseudomonas and Legionella spp. from eyewash stations. Appl Environ Microbiol 57(1):163–167

    CAS  Google Scholar 

  • Patterson WJ, Hay J, Seal DV, McLuckie JC (1997) Colonization of transplant unit water supplies with Legionella and protozoa: precautions required to reduce the risk of legionellosis. J Hosp Infect 37(1):7–17. doi:10.1016/S0195-6701(97)90068-2

    Article  CAS  Google Scholar 

  • Rohr U, Weber S, Michel R, Selenka F, Wilhelm M (1998) Comparison of free-living amoebae in hot water systems of hospitals with isolates from moist sanitary areas by identifying genera and determining temperature tolerance. Appl Environ Microbiol 64(5):1822–1824

    CAS  Google Scholar 

  • Rowbotham TJ (1980) Preliminary report on the pathogenicity of Legionella pneumophila for freshwater and soil amoebae. J Clin Pathol 33(12):1179–1183. doi:10.1136/jcp.33.12.1179

    Article  CAS  Google Scholar 

  • Serrano-Suárez A (2009) Relación de Legionella spp. con parámetros microbiológicos y fisicoquímicos en aguas. Dissertation, Universitat de Barcelona

  • Serrano-Suárez A, Dellundé J, Salvadó H, Cerveró-Aragó S, Méndez J, Canals O, Blanco S, Arcas A, Araujo R (2013) Microbial and physicochemical parameters associated with Legionella contamination in hot water recirculation systems. Environ Sci Pollut Res Int 20(8):5534–5544. doi:10.1007/s11356-013-1557-5

    Article  Google Scholar 

  • Shoff ME, Rogerson A, Kessler K, Schatz S, Seal DV (2008) Prevalence of Acanthamoeba and other naked amoebae in South Florida domestic water. J Water Health 6(1):99–104. doi:10.2166/wh.2007.014

    Article  CAS  Google Scholar 

  • Storey MV, Winiecka-Krusnell J, Ashbolt NJ, Stenström TA (2004) The efficacy of heat and chlorine treatment against thermotolerant Acanthamoebae and Legionellae. Scand J Infect Dis 36(9):656–662. doi:10.1080/00365540410020785

    Article  CAS  Google Scholar 

  • Sutherland EE, Berk SG (1996) Survival of protozoa in cooling tower biocides. J Ind Microbiol 16(1):73–78. doi:10.1007/BF01569925

    Article  CAS  Google Scholar 

  • Thomas V, Bouchez T, Nicolas V, Robert S, Loret JF, Levi Y (2004) Amoebae in domestic water systems: resistance to disinfection treatments and implication in Legionella persistence. J Appl Microbiol 97(5):950–963. doi:10.1111/j.1365-2672.2004.02391.x

    Article  CAS  Google Scholar 

  • Thomas V, Herrera-Rimann K, Blanc DS, Greub G (2006) Biodiversity of amoebae and amoeba-resisting bacteria in a hospital water network. Appl Environ Microbiol 72(4):2428–2438. doi:10.1128/AEM. 72.4.2428-2438.2006

    Article  CAS  Google Scholar 

  • Thomas V, Loret JF, Jousset M, Greub G (2008) Biodiversity of amoebae-resisting bacteria in a drinking water treatment plant. Environ Microbiol 10(10):2728–2745. doi:10.1111/j.1462-2920.2008.01693.x

    Article  CAS  Google Scholar 

  • Trabelsi H, Dendana F, Sellami A, Sellami H, Cheikhrouhou F, Neji S, Makni F, Ayadi A (2012) Pathogenic free-living amoebae: epidemiology and clinical review. Pathol Biol 60(6):399–405. doi:10.1016/j.patbio.2012.03.002

    Article  CAS  Google Scholar 

  • Valster RM, Wullings BA, Bakker G, Smidt H, van der Kooij D (2009) Free-living protozoa in two unchlorinated drinking water supplies, identified by phylogenic analysis of 18S rRNA gene sequences. Appl Environ Microbiol 75(14):4736–4746. doi:10.1128/AEM. 02629-08

    Article  CAS  Google Scholar 

  • Visvesvara GS, Moura H, Schuster FL (2007) Pathogenic and opportunistic free-living amoebae: Acanthamoeba spp., Balamuthia mandrillaris, Naegleria fowleri and Sappinia diploidea. FEMS Immunol Med Microbiol 50(1):1–26. doi:10.1111/j.1574-695X.2007.00232.x

    Article  CAS  Google Scholar 

  • Yamamoto H, Sugiura M, Kusunoki S, Yukiezaki T, Ikedo M, Yabuuchi E (1992) Factors stimulating propagation of Legionellae in cooling tower water. Appl Environ Microbiol 58(4):1394–1397

    CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Spanish Ministry of Education and Science (MEC-CGL 2005–01465).

Conflict of interest

There is no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rosa Araujo.

Additional information

Responsible editor: Gerald Thouand

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Canals, O., Serrano-Suárez, A., Salvadó, H. et al. Effect of chlorine and temperature on free-living protozoa in operational man-made water systems (cooling towers and hot sanitary water systems) in Catalonia. Environ Sci Pollut Res 22, 6610–6618 (2015). https://doi.org/10.1007/s11356-014-3839-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-014-3839-y

Keywords

Navigation