Environmental Science and Pollution Research

, Volume 22, Issue 8, pp 6024–6033 | Cite as

Surfactants in atmospheric aerosols and rainwater around lake ecosystem

  • Intan Suraya Razak
  • Mohd Talib LatifEmail author
  • Shoffian Amin Jaafar
  • Md Firoz Khan
  • Idris Mushrifah
Research Article


This study was conducted to determine the composition of surfactants in atmospheric aerosols and rainwater in the vicinity of Lake Chini, Malaysia. Samples of atmospheric aerosol and rainwater were collected between March and September 2011 using a high volume air sampler (HVAS) and glass bottles equipped with funnel. Colorimetric analysis was undertaken to determine the concentration of anionic surfactants as methylene blue active substances (MBAS) and cationic surfactants as disulphine blue active substances (DBAS). The water-soluble ionic compositions were determined using inductively coupled plasma mass spectrometry for cations (Na, K, Mg and Ca) and ion chromatography equipped with a conductivity detector for anions (F, Cl, NO3 , and SO4 2−) and the Nessler Method was used to obtain the NH4 + concentrations. The source apportionment of MBAS and DBAS in atmospheric aerosols was identified using a combination of principal component analysis (PCA) and multiple linear regression (MLR). The results revealed that the concentrations of surfactants in atmospheric aerosols and rainwater were dominated by anionic surfactants as MBAS. The concentration of surfactants as MBAS and DBAS was dominated in fine mode compared to coarse mode aerosols. Using PCA/MLR analysis, two major sources of atmospheric surfactants to Lake Chini were identified as soil dust (75 to 93 %) and biomass burning (2 to 22 %).


Lake Chini Surfactants Aerosols Rainwater Source apportionment 



The authors would like to thank the Malaysian Ministry of Higher Education for funding via Fundamental Research Grants (UKMTOPDOWN-ST-08-FRGS0003-2010 and FRGS/1/2013/SPWN01/UKM/02/) and Universiti Kebangsaan Malaysia for University Research Grant (DIP-2014-005). Special thanks to Dr. Rose Norman for the assistance with the proofreading of this manuscript and Pusat Penyelidikan Tasik Chini (PPTC) for the research funding with the valuable information and hospitality.


  1. Almeida CMR, Dias AC, Mucha AP, Borda AA, Vasconcelos MTSD (2009) Influence of surfactants on the Cu phytoremediation potential of a salt marsh plant. Chemosphere 75:135–140CrossRefGoogle Scholar
  2. Andrea MO, Crutzen PJ (1997) Atmospheric aerosols: biogeochemical sources and role in atmospheric chemistry. Science 276:1052–1058CrossRefGoogle Scholar
  3. Asa-Awuku A, Sullivan AP, Hennigan CJ, Weber RJ, Nenes A (2008) Investigation of molar volume and surfactant characteristics of water-soluble organic compounds in biomass burning aerosol. Atmos Chem Phys 8:799–812CrossRefGoogle Scholar
  4. Boulanger B, Vargo J, Schnoor JL, Hornbuckle KC (2004) Detection of perfluorooctane surfactants in Great Lakes water. Environ Sci Technol 38:4064–4070CrossRefGoogle Scholar
  5. Cane F, Hoxha B, Avdolli M (2010) Water quality in Carstic Lake, Albania. Natura Montenegrina Podgorica 9:349–355Google Scholar
  6. Chatterjee S, Hadi AS, Price B (eds) (1999) Regression analysis by example. Wiley, New YorkGoogle Scholar
  7. Chitikela S, Dentel SK, Allen HE (1995) Modified method for the analysis of anionic surfactants as methylene blue active substances. Analyst 120:2001–2004CrossRefGoogle Scholar
  8. Cho H-H, Choi J, Goltz MN, Park JW (2002) Combined effect of natural organic matter and surfactants on the apparent solubility of polycyclic aromatic hydrocarbons. J Environ Qual 31:275–280CrossRefGoogle Scholar
  9. Coelho FJRC, Sousa S, Santos L, Santos AL, Almeida A, Gomes NCM, Cunha  (2011) Exploring hydrocarbonoclastic bacterial communities in the estuarine surface microlayer. Aquat Microb Ecol 64:185–195CrossRefGoogle Scholar
  10. Comber MH, Williams TD, Stewart KM (1993) The effect of nonylphenol on Daphnia magna. Water Res 27:273–276CrossRefGoogle Scholar
  11. Cozic J, Verheggen B, Weingartner E, Crosier J, Bower KN, Flynn M, Coen H, Henning S, Steinbacher M, Henne S, Coen MC, Petzold A, Baltensperger U (2008) Chemical composition of free tropospheric aerosol for PM1 and coarse mode at the high alpine site Jungfraujoch. Atmos Chem Phys 8:407–423CrossRefGoogle Scholar
  12. Dominick D, Juahir H, Latif MT, Zain SM, Aris AZ (2012) Spatial assessment of air quality patterns in Malaysia using multivariate analysis. Atmos Environ 60:172–181CrossRefGoogle Scholar
  13. Downing JA, Prairie YT, Cole JJ, Duarte CM, Tranvik LJ, Striegl RG, McDowell WH, Kortelainen P, Caraco NF, Melack JM, Middelburg JJ (2006) The global abundance and size distribution of lakes, ponds, and impoundments. Limnol Oceanogr 51:2388–2397CrossRefGoogle Scholar
  14. Fang M, Zheng M, Wang F, To KL, Jaafar AB, Tong SL (1999) The solvent extractable organic compounds in the Indonesian biomass burning aerosols characterization studies. Atmos Environ 33:783–795CrossRefGoogle Scholar
  15. Haitzer M, Höss S, Traunspurger W, Steinberg C (1998) Effects of dissolved organic matter (DOM) on the bioconcentration of organic chemicals in aquatic organisms: a review. Chemosphere 37:1335–1362CrossRefGoogle Scholar
  16. Hanif NM, Latif MT, Ali MM, Othman MR (2009) Atmospheric surfactants around lake ecosystems. Euro J Sci Res 32:268–276Google Scholar
  17. He K, Yang F, Ma Y, Zhang Q, Yao X, Chan CK, Cadle S, Chan T, Mulawa P (2001) The characteristics of PM2.5 in Beijing. China. Atmos Environ 35:4959–4970CrossRefGoogle Scholar
  18. Ivanković T, Hrenović J (2010) Surfactants in the environment. Arh Hig Rada Toxicol 61:95–110Google Scholar
  19. Klavins M, Purmalis O (2010) Humic substances as surfactants. Environ Chem Lett 8:349–354CrossRefGoogle Scholar
  20. Koopal LK, Goloub TP, Davis TA (2004) Binding of ionic surfactants to purified humic acid. J Colloid Interface Sci 275:360–367CrossRefGoogle Scholar
  21. Krivacsy Z, Kiss G, Ceburnis D, Jennings G, Maenhaut W, Salma I, Shooter D (2008) Study of water-soluble atmospheric humic matter in urban and marine environments. Atmos Res 87:1–12CrossRefGoogle Scholar
  22. Latif MT, Brimblecombe P (2004) Surfactants in atmospheric aerosols. Environ Sci Technol 38:6501–6506CrossRefGoogle Scholar
  23. Latif MT, Brimblecombe P, Ramli NA, Sentian J, Sukhapan J, Sulaiman N (2005) Surfactants in South East Asian aerosols. Environ Chem 2:198–204CrossRefGoogle Scholar
  24. Latif MT, Rozali MO (1999) Dust fall at Ayer Keroh (Melaka) and Teluk Kalung (Terengganu) industrial areas. Malays J Anal Sci 5:137–146Google Scholar
  25. Latif MT, Wanfi L, Hanif NM, Roslan RN, Ali MM, Mushrifah I (2012) Composition and distribution of surfactants around Lake Chini, Malaysia. Environ Monit Assess 184:1325–1334CrossRefGoogle Scholar
  26. Lawson JR, Winchester JW (1979) Sulfur and trace element concentration relationship in aerosols from the South American continent. Geophys Res Lett 5:195–198CrossRefGoogle Scholar
  27. Liu W, Hopke PK, Han Y, Yi S-M, Holsen TM, Cybart S, Koslowski K, Milligan M (2003) Application of receptor modelling to atmospheric constituents at Potsdam and Stockton, NY. Atmos Environ 37:4997–5007CrossRefGoogle Scholar
  28. Mansha M, Ghauri B, Rahman S, Amman A (2012) Characterization and source apportionment of ambient air particulate matter (PM2.5). Sci Total Environ 425:176–183CrossRefGoogle Scholar
  29. Mohamed M, Suleiman MFS, Khan N (1994) Environmental impacts of developing a resort on a tropical lake—the Tasik Chini Story. In International Symposium on Ecology and Engineering. Taman Negara Resort, MalaysiaGoogle Scholar
  30. Norela S, Maimon A, Rozali MO (2006) kepekatan plumbum, kadmium, nitrat dan ammonium di udara. Malay J Anal Sci 10:109–114Google Scholar
  31. Norusis MJ (ed) (1990) SPSS base system user’s guide. SPSS, ChicagoGoogle Scholar
  32. Olkowska E, Ruman M, Polkowska Z (2014) Occurrence of surface active agents in the environment. J Anal Method Chem 1–16Google Scholar
  33. Oppo C, Bellandi S, Innocenti ND, Stortini AM, Loglio G, Schiavuta E, Cini R (1999) Surfactant components of marine organic matter as agents for biogeochemical fractionation and pollutant transport via marine aerosols. Mar Chem 63:235–253CrossRefGoogle Scholar
  34. Othman M, Latif MT (2013) Dust and gas emission from small-scale peat combustion. Aerosol Air Qual Res 13:1045–1059Google Scholar
  35. Pavlić Ž, Vidaković-Cifrek Ž, Puntarić D (2005) Toxicity of surfactants to green microalgae Pseudokirchneriella subcapitata and Scenedesmus subspicatus and to marine diatoms Phaeodactylum tricornutum and Skeletonema costatum. Chemosphere 61:1061–1068CrossRefGoogle Scholar
  36. Pentamwa P, Oanh NTK (2008) Air quality in southern Thailand during haze episode in relation to air mass trajectory. Songklanakarin J Sci Technol 30:539–546Google Scholar
  37. Razak IS, Tan ZZ, Nor ZM, Wahid NBA, Mushrifah I, Latif MT (2013) Correlation between surfactants and heavy metals in a natural lake. Environ Forensics 14:59–68Google Scholar
  38. Roslan RN, Hanif NM, Othman MR, Azmi WNFW, Yan XX, Ali MM (2010) Surfactants in the sea-surface microlayer and their contribution to atmospheric aerosols around coastal areas of the Malaysian Peninsula. Mar Pollut Bull 60:1584–1590CrossRefGoogle Scholar
  39. Saxena P, Hildemann L (1996) Water-soluble organics in atmospheric particles: a critical review of the literature and application of thermodynamics to identify candidate compounds. J Atmos Chem 24:57–109CrossRefGoogle Scholar
  40. Sharip Z, Jusoh J (2010) Integrated lake basin management and its importance for Lake Chini and others in Malaysia. Lakes Reserv Res Manag 15:41–51CrossRefGoogle Scholar
  41. Shi G-L, Zeng F, Li X, Feng Y-C, Wang Y-Q, Liu G-X, Zhu T (2011) Estimated contributions and uncertainties of PCA/MLReCMB results: source apportionment for synthetic and ambient datasets. Atmos Environ 45:2811–2819CrossRefGoogle Scholar
  42. Shuhaimi-Othman M, Lim EC, Idris M (2007) Water quality changes in Chini Lake Pahang, West Malaysia. Environ Monit Assess 131:279–292CrossRefGoogle Scholar
  43. Srivastava A, Gupta S, Jain VK (2008) Source apportionment of total suspended particulate matter in coarse and fine ranges over Delhi. Aero Air Qual Res 8:188–200Google Scholar
  44. Statheropoulos M, Vassilliadis N, Pappa A (1998) Principal component and canonical correlation analysis for examining air pollution and meteorological data. Atmos Environ 32:1087–1095CrossRefGoogle Scholar
  45. Tsitouridou R, Voutsa D, Kouimtzis T (2003) Ionic composition of PM10 in the area of Thessaloniki, Greece. Chemosphere 52:883–891CrossRefGoogle Scholar
  46. Viana M, Kuhlbusch TAJ, Querola X, Alastueya A, Harrison RM, Hopke PK, Winiwarter W, Vallius M, Szidat S, Prévôt ASH, Hueglin C, Bloemen H, Wåhlin P, Vecchi R, Miranda AI, Kasper-Giebl A, Maenhaut W, Hitzenberger R (2008) Source apportionment of particulate matter in Europe: a review of methods and results. J Aerosol Sci 39:827–849CrossRefGoogle Scholar
  47. Wahid NBA, Latif MT, Suratman S (2013) Composition and source apportionment of surfactants in atmospheric aerosols of urban and semi-urban areas in Malaysia. Chemosphere 91:1508–1516CrossRefGoogle Scholar
  48. Warne MSJ, Schifko AD (1999) Toxicity of laundry detergent components to a freshwater cladoceran and their contribution to detergent toxicity. Ecotoxicol Environ Saf 44:196–206CrossRefGoogle Scholar
  49. Wetzel RG (2001) Limnology: lake and river ecosystems. Academic, USAGoogle Scholar
  50. Williams J (2004) Organic trace gases in the atmosphere: an overview. Environ Chem 1:125–136CrossRefGoogle Scholar
  51. Yao XH, Chan CK, Fang M, Cadle S, Chan T, Mulawa P, He K, Ye B (2002) The water-soluble ionic composition of PM2.5 in Shanghai and Beijing, China. Atmos Environ 36:4223–4234CrossRefGoogle Scholar
  52. Yuan CS, Lee CG, Liu SH, Chang JC, Yuan C, Yang HY (2006) Correlation of atmospheric visibility with chemical composition of Kaohsiung aerosols. Atmos Res 82:663–679CrossRefGoogle Scholar
  53. Zhang MY, Wang SJ, Wu FC, Yuan XH, Zhang Y (2007) Chemical compositions of wet precipitation and anthropogenic influences at a developing urban site in southeastern China. Atmos Res 84:311–322CrossRefGoogle Scholar
  54. Zhao Y, Yang ZF, Li YX (2010) Investigation of water pollution in Baiyangdian Lake, China. Procedia Environ Sci 737–748Google Scholar
  55. Zimmer AT, Baron PA, Biswas P (2002) The influence of operating parameters on number-weighted aerosol size distribution generated from a gas metal arc welding process. J Aerosol Sci 33:519–531CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Intan Suraya Razak
    • 1
  • Mohd Talib Latif
    • 1
    • 2
    Email author
  • Shoffian Amin Jaafar
    • 1
  • Md Firoz Khan
    • 1
    • 2
  • Idris Mushrifah
    • 1
    • 3
  1. 1.School of Environmental and Natural Resource Sciences, Faculty of Science and TechnologyUniversiti Kebangsaan MalaysiaBangiMalaysia
  2. 2.Centre for Tropical Climate Change System (IKLIM), Institute for Climate ChangeUniversiti Kebangsaan MalaysiaBangiMalaysia
  3. 3.Pusat Penyelidikan Tasik Chini (PPTC), Faculty of Science and TechnologyUniversiti Kebangsaan MalaysiaBangiMalaysia

Personalised recommendations