Skip to main content
Log in

Preparation and use of maize tassels’ activated carbon for the adsorption of phenolic compounds in environmental waste water samples

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

The determination and remediation of three phenolic compounds bisphenol A (BPA), ortho-nitrophenol (o-NTP), parachlorophenol (PCP) in wastewater is reported. The analysis of these molecules in wastewater was done using gas chromatography (GC) × GC time-of-flight mass spectrometry while activated carbon derived from maize tassel was used as an adsorbent. During the experimental procedures, the effect of various parameters such as initial concentration, pH of sample solution, eluent volume, and sample volume on the removal efficiency with respect to the three phenolic compounds was studied. The results showed that maize tassel produced activated carbon (MTAC) cartridge packed solid-phase extraction (SPE) system was able to remove the phenolic compounds effectively (90.84–98.49 %, 80.75–97.11 %, and 78.27–97.08 % for BPA, o-NTP, and PCP, respectively) . The MTAC cartridge packed SPE sorbent performance was compared to commercially produced C18 SPE cartridges and found to be comparable. All the parameters investigated were found to have a notable influence on the adsorption efficiency of the phenolic compounds from wastewaters at different magnitudes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Achak M, Hafidi A, Ouazzani N, Sayadi S, Mandi L (2009) Low cost biosorbent “banana peel” for the removal of phenolic compounds from olive mill wastewater: kinetic and equilibrium studies. J Hazard Mater 166:117–125. doi:10.1016/j.jhazmat.2008.11.036

    Article  CAS  Google Scholar 

  • Ahmaruzzaman M (2008) Adsorption of phenolic compounds on low-cost adsorbents: a review. Adv Colloid Interface Sci 143:48–67. doi:10.1016/j.cis.2008.07.002

    Article  CAS  Google Scholar 

  • Alhamed YA (2009) Adsorption kinetics and performance of packed bed adsorber for phenol removal using activated carbon from dates’ stones. J Hazard Mater 170:763–770. doi:10.1016/j.jhazmat.2009.05.002

    Article  CAS  Google Scholar 

  • Altenor S, Carene B, Emmanuel E, Lambert J, Ehrhardt JJ, Gaspard S (2009) Adsorption studies of methylene blue and phenol onto vetiver roots activated carbon prepared by chemical activation. J Hazard Mater 165:1029–1039. doi:10.1016/j.jhazmat.2008.10.133

    Article  CAS  Google Scholar 

  • Alvarez P, García-Araya JF, Beltrán FJ, Masa FJ, Medina F (2005) Ozonation of activated carbons: effect on the adsorption of selected phenolic compounds from aqueous solutions. J Colloid Interface Sci 283:503–12. doi:10.1016/j.cis.2004.09.014

    Article  CAS  Google Scholar 

  • Bacaloni A, Goretti G, Lagana A, Petronio BM (1980) Sorption capacities of graphitized carbon black in determination of chlorinate pesticides traces in water. Anal Chem 52:2033–2036. doi:10.1021/ac50063a011

    Article  CAS  Google Scholar 

  • Bacaoui A, Yaacoubi A, Dahbi, A, Bennouna, C, Luu RPT, Maldonado-Hodar FJ, Rivera-Utrilla J, Moreno-Castilla C (2001) Optimization of conditions for the preparation of activated carbons from olive-waste cakes. Carbon 39:425–432

  • Bagheri H, Mohammadi A, Salemi A (2004) On-line trace enrichment of phenolic compounds from water using a pyrrole-based polymer as the solid-phase extraction sorbent coupled with high-performance liquid chromatography. Anal Chim Acta 513:445–449. doi:10.1016/j.aca.2004.03.020

    Article  CAS  Google Scholar 

  • Banat F, AI-Bashir B, Al-Asheh S, Hayajneh O (2000) Adsorption of phenol by bentonite. Env Poll 107:391–398. doi:10.1016/S0269-7491(99)00173-6

    Article  CAS  Google Scholar 

  • Bansal RC, Goyal M (2005) Activated carbon adsorption. CRC Press (Taylor and Francis Group) , Boca Raton, FL

    Book  Google Scholar 

  • Brossa L, Procurull E, Borull F, Marce RM (2002) A rapid method for determining phenolic endocrine disrupters in water samples. Chromatographia 56:573–576. doi:10.1007/BF02497672

    Article  CAS  Google Scholar 

  • Brouwer E, Brinkman U (1994) Determination of phenolic compounds in surface water using on-line liquid chromatographic precolumn based column-switching techniques. J Chromatogr A 678:223–231. doi:10.1016/0021-9673(94)80469-9

    Article  CAS  Google Scholar 

  • Burke ER, Holdena J, Shawi CA (2003) Method to determine residue levels of persistent organochlorine pesticides in human milk from Indonesian women. Chemosphere 50:529. doi:10.1016/S0045-6535(02)00492-7

    Article  CAS  Google Scholar 

  • Cai Y, Jiang GB, Liu JF, Zhou QX (2003a) Multiwalled carbon nanotubes as a solid-phase extraction adsorbent for the determination of bisphenol A, 4-n-nonylphenol, and 4-tert-octylphenol. Anal Chem 75:2517–2521. doi:10.1021/ac0263566

    Article  CAS  Google Scholar 

  • Cai YQ, Jiang GB, Liu JF, Zhou QX (2003b) Multi-walled carbon nanotubes packed cartridge for the solid-phase extraction of several phthalate esters from water samples and their determination by high performance liquid chromatography. Anal Chim Acta 494:149–156. doi:10.1016/j.aca.2003.08.006

    Article  CAS  Google Scholar 

  • Cai Y-Q, Cai Y, Mou S-F, Lu Y-Q (2005) Multi-walled carbon nanotubes as a solid-phase extraction adsorbent for the determination of chlorophenols in environmental water samples. J Chromatogr A 1081:245–247. doi:10.1016/j.chroma.2005.05.080

    Article  CAS  Google Scholar 

  • Carabias-Martínez R, Rodríguez-Gonzalo E, Herrero-Hernández E, Hernández-Méndez J (2004) Simultaneous determination of phenyl and sulfonylurea herbicides in water by solid phase extraction and liquid chromatography with UV diode array or mass spectrometric detection. Anal Chim Acta 517:71–79. doi:10.1016/j.aca.2004.05.007

    Article  Google Scholar 

  • Castro RSD, Caetano L, Ferreira G, Padilha PM, Saeki MJ, Zara LF, Martines MAU, Castro GR (2011) Banana peel applied to the solid phase extraction of copper and lead from river water: preconcentration of metal ions with a fruit waste. Ind Eng Chem Res 50:3446–3451. doi:10.1021/ie101499e

    Article  CAS  Google Scholar 

  • Demiral H, Demiral I, Karabacako Lu B, Tümsek F (2011) Production of activated carbon from olive bagasse by physical activation. Chem Eng Res Des 89:206–213. doi:10.1016/j.cherd.2010.05.005

    Article  CAS  Google Scholar 

  • Dabrowski A, Podkocielny P, Hubicki Z, Barczak M (2005) Adsorption of phenolic compounds by activated carbon: a critical review. Chemosphere 58:1049–1070. doi:10.1016/j.chemosphere.2004.09.067

    Article  CAS  Google Scholar 

  • El-Hendawy A-NA, Samra SE, Girgis BS (2001) Adsorption characteristics of activated carbons obtained from corncobs. Colloid Surface A: Physicochem Eng Aspects 180:209–221. doi:10.1016/S0927-7757(00)00682-8

    Article  CAS  Google Scholar 

  • EPA Report (1995) Phenols by gas chromatography: capillary column technique. U.S. Environmental Protection Agency, Washington DC

    Google Scholar 

  • Eskilssons C, Bjӧrklund E (2000) Analytical-scale microwave-assisted extraction. J Chromatogr A 227:902. doi:10.1016/S0021-9673(00)00921-3

    Google Scholar 

  • Fan M, Marshall W, Daugaard D, Brown RC (2004) Steam activation of chars produced from oat hulls and corn stover. Bioresourc Technol 93:103–107. doi:10.1016/j.biortech.2003.08.016

    Article  CAS  Google Scholar 

  • Fritz JS (1999) Analytical solid-phase extraction. Wiley-VCH, New York

    Google Scholar 

  • Galceran MT, Jauregui O (1995) Determination of phenols in sea water by liquid chromatography with electrochemical detection after enrichment by using solid-phase extraction cartridges and disks. Anal Chim Acta 304:75–84. doi:10.1016/SSDI 0003.2670(94)00567-2

    Article  CAS  Google Scholar 

  • Gao W, Sun X, Chen T, Lin Y, Chen Y, Lu F, Chen Z (2012) Preparation of cyano-functionalized multiwalled carbon nanotubes as solid-phase extraction sorbent for preconcentration of phenolic compounds in environmental water. J Sep Sci 35:1967–1976. doi:10.1002/jssc.201200045

    Article  CAS  Google Scholar 

  • Gayatri SL, Ahmaruzzaman M (2010) Adsorption technique for the removal of phenolic compounds from wastewater using low-cost natural adsorbents. Assam Uni J Sci Technol 5:156–166

    Google Scholar 

  • Geundi M (1997) Adsorbents of industrial pollution control. Adsorp Sci Technol 15:777–787

    Google Scholar 

  • Hameed BH, Rahman AA (2008) Removal of phenol from aqueous solutions by adsorption onto activated carbon prepared from biomass material. J Hazard Mater 160:576–581. doi:10.1016/j.jhazmat.2008.03.028

    Article  CAS  Google Scholar 

  • Hengel MJ, Shibamoto T (2000) Gas chromatographic–mass spectrometric method for the analysis of dimethomorph fungicide in dried hops. J Agric Food Chem 48:5824. doi:10.1021/jf000620j

    Article  CAS  Google Scholar 

  • Holadova K, Hajšlová J (1995) A comparison of different ways of sample preparation for the determination of phthalic acid esters in water and plant matrices. Int J Environ Anal Chem 59:43–57. doi:10.1080/03067319508027635

    Article  CAS  Google Scholar 

  • Inoue K, Kato K, Yoshimura Y, Makino T, Nakazawa H (2000) Determination of bisphenol A in human serum by high-performance liquid chromatography with multi-electrode electrochemical detection. J Chromatogr B 749:17–23. doi:10.1016/S0378-4347(00)00351-0

    Article  CAS  Google Scholar 

  • Ioannidou O, Zabaniotou A (2007) Agricultural residues as precursors for activated carbon production—a review. Renew Sustain Energy Rev 11:1966–2005. doi:10.1016/j.rser.2006.03.013

    Article  CAS  Google Scholar 

  • Ioannou Z, Simitzis J (2009) Adsorption kinetics of phenol and 3-nitrophenol from aqueous solutions on conventional and novel carbons. J Hazard Mater 171:954–964. doi:10.1016/j.jhazmat.2009.06.098

    Article  CAS  Google Scholar 

  • Jiang ZM, Li AM, Cai JG, Wang C, Zhang QX (2007) Adsorption of phenolic compounds from aqueous solutions by aminated hypercrosslinked polymers. J Environ Sci 19:135–140. doi:10.1016/S1001-0742(07)60022-9

    Article  CAS  Google Scholar 

  • Khuhawar MY, Sarafraz-Yazdi A, Uden PC (1993) Capillary gas chromatographic determination of copper and nickel using microwave-induced plasma atomic emission detection. J Chromatogr A 636:271–276. doi:10.1016/0021-9673(93)80241-Y

    Article  Google Scholar 

  • Manirakiza P, Covacia A, Schepens P (2000) Single step clean up and GC-MS quantification of organochlorine pesticide residues in spice powder. Chromatographia 52:787

    Article  CAS  Google Scholar 

  • Marcilla A, Garcıa-Garcıa S, Asensio M, Conesa JA (2000) Influence of thermal treatment regime on the density and reactivity of activated carbons from almond shells. Carbon 38:429–40. doi:10.1016/S0008-6223(99)00123-2

    Article  CAS  Google Scholar 

  • Masque N, Galia M, Marce RM, Borrull F (1997) Chemically modified polymeric resin used as sorbent in a solid phase extraction process to determine phenolic compounds in water. J Chromatogr A 771:55–61. doi:10.1016/S0021-9673(97)00125-8

    Article  CAS  Google Scholar 

  • Masque N, Galia M, Marce RM, Borrull F (1998) New chemically modified polymeric resin for solid-phase extraction of pesticides and phenolic compounds from water. J Chromatogr A 803:147–155. doi:10.1016/ S0021-9673(97)01225-9

    Article  CAS  Google Scholar 

  • Michailof C, Stavropoulos GG, Panayiotou C (2008) Enhanced adsorption of phenolic compounds, commonly encountered in olive mill wastewaters, on olive husk derived activated carbons. Bioresour Technol 99:6400–6408. doi:10.1016/j.biortech.2007.11.057

    Article  CAS  Google Scholar 

  • Mohamed EF, Andriantsiferana C, Wilhelm AM, Delmas H (2011) Competitive adsorption of phenolic compounds from aqueous solution using sludge based activated carbon. Environ Technol 32:1325–1336. doi:10.1080/09593330.2010.11.05

    Article  CAS  Google Scholar 

  • Moreno-Castilla C, Rivera-Utrilla J, Lopez-Ramon MV, Carrasco-Marin F (1995) Activated carbon surface modifications by nitric acid, hydrogen peroxide, and ammonium peroxydisulfate treatments. Langmuir 11:4386–4392. doi:10.1021/1a00011a035

    Article  CAS  Google Scholar 

  • Myers AL, Zolandz RR (1981) Effect of pH on multicomponent adsorption from dilute aqueous solution on activated carbon. In: McGuire MJ, Suffet IH (eds) Adsorption of organics from the aqueous phase. Ann Arbor Science Publishers, Inc, Michigan

    Google Scholar 

  • Nassar MM, Magdy YH, Daifullah AEH, Kelany H (2008) Mass transfer and adsorption kinetics of phenolic compounds onto activated carbon prepared from rice husk. Adsorpt Sci Technol 26:157–167. doi:10.1260/026361708786036070

    Article  CAS  Google Scholar 

  • Njoku VO, Hameed BH (2011) Preparation and characterization of activated carbon from corn cob by chemical activation with H3PO4 for 2, 4-dichlorophenoxy acetic acid adsorption. Chem Eng J 143(2):391–399. doi:10.1016/j.cej.2011.07.075

    Article  Google Scholar 

  • Olorundare OF, Krause RWM, Okonkwo JO, Mamba BB (2012) Potential application of activated carbon from maize tassel for the removal of heavy metals in water. J Phys Chem Earth 50–52:104–110. doi:10.1016/j.pce.2012.06.001

    Article  Google Scholar 

  • Patsias J, Papadopoulou-Mourkidou E (2000) Development of an automated on-line solid-phase extraction high-performance liquid chromatographic method for the analysis of aniline, phenol, caffeine and various selected substituted aniline and phenol compounds in aqueous matrices. J Chromatogr A 904:171–188. doi:10.1016/S0021-9673

    Article  CAS  Google Scholar 

  • Peng X, Wang Z, Yang C, Chena F, Mai B (2006) Simultaneous determination of endocrine-disrupting phenols and steroid estrogens in sediment by gas chromatography mass spectrometry. J Chromatogr A 1116:51–56. doi:10.1016/j.chroma.2006.03.017

    Article  CAS  Google Scholar 

  • Pocurull EM, Marce RM, Borrull F (1995) Improvement of online solid phase extraction for determining phenolic compounds in water. Chromatographia 41:521–526. doi:10.1007/BF02269714

    Article  CAS  Google Scholar 

  • Przyjazny A (1985) Evaluation of the suitability of selected porous polymers for preconcentration of organosulphur compounds from water. J Chromatogr A 346:61–67. doi:10.1016/S0021-9673(00)90494-1

    Article  CAS  Google Scholar 

  • Puig D, Barcelo D (1996) Determination of phenolic compounds in water and waste water. TrAC Trends Anal Chem 15:362–375. doi:10.1016/0165-9936(96)00057-X

    CAS  Google Scholar 

  • Puig D, Barcelo D (1997) Determination of polar priority phenols at parts per billion levels in water using on-line liquid–solid extraction followed by liquid chromatography with coulimetric detection. J Chromatogr A 778:313–319. doi:10.1016/S0021-9673(97)00302-6

    Article  CAS  Google Scholar 

  • Putun AE, Ozbay N, Onal EP, Putun E (2005) Fixed-bed pyrolysis of cotton stalk for liquid and solid products. Fuel Process Technol 86:1207–19. doi:10.1016/j.fuproc.2004.12.006

    Article  Google Scholar 

  • Raoov M, Mohamad S, Abas MRB, Surikumaran H (2014) New macroporous β-cyclodextrin functionalized ionic liquid polymer as an adsorbent for solid phase extraction with phenols. Talanta 130:155–163. doi:10.1016/j.talanta.2014.06.067

    Article  CAS  Google Scholar 

  • Rodríguez I, Turnes MI, Mejuto MC, Cela R (1996) Determination of chlorophenols at the sub-ppb level in tap water using derivatization, solid-phase extraction and gas chromatography with plasma atomic emission detection. J Chromatogr A 721:297–304. doi:10.1016/0021-9673(95)00795-4

    Article  Google Scholar 

  • Rodríguez I, Turnes MI, Mejuto MC, Cela R (1997) Evaluation of two solid-phase extraction procedures for the preconcentration of chlorophenols in drinking water. J Chromatogr A 786:285–92. doi:10.1016/S0021-9673(97)00579-7

    Article  Google Scholar 

  • Rodríguez I, Llompart M, Cela R (2000) Solid phase extraction of phenols. J Chromatogr A 885:291–304. doi:10.1016/S0021-9673(00)00116-3

    Article  Google Scholar 

  • Rouquerol F, Rouquerol J, Sing K (1999) Adsorption by powders and porous solids. Academic, London

    Google Scholar 

  • Ruthven DM (1984) Principle of adsorption and desorption processes. John Wiley & Sons, New York

    Google Scholar 

  • Simpson NJ (2000) Solid phase extraction: principles, techniques, and applications. Basel, Marcel Dekker, New York

    Book  Google Scholar 

  • Sing KSW, Everett DH, Haul RAW, Moscou L, Pierotti RA, Rouquerol J, Siemieniewska T (1985) Reporting physisorption data for solid systems with special reference to the determination of surface area and porosity (recommendations 1984). Pure Appl Chem 57:603–619. doi:10.1351/pac198557040603

    Article  CAS  Google Scholar 

  • Srihari V, Das A (2008) Comparative studies on adsorptive removal of phenol by three agro-based carbons: equilibrium and isotherm studies. Ecotoxicol Environ Saf 71:274–283. doi:10.1016/j.ecoenv.2007.08.008

    Article  CAS  Google Scholar 

  • Stout SJ, DaCunha AR, Safarpour MM (1997) Simplified determination of imidazolinone herbicides in soil at parts-per-billion level by liquid chromatography /electrospray ionization tandem mass spectrometry. J AOAC Int 80:426–432

    CAS  Google Scholar 

  • Thurman EM, Mills MS (1998) Solid-phase extraction: principles and practice. Wiley, New York

    Google Scholar 

  • Tian Y, Xie Z-M, Chen M-L, Wang J-H (2011) Cadmium preconcentration with bean-coat as a green adsorbent with detection by electrothermal atomic absorption spectrometry. J Anal At Spectrom 26:1408–1413. doi:10.1039/c0ja00265h

    Article  CAS  Google Scholar 

  • Tsai WT, Chang CY, Lee SL (1998) A low cost adsorbent from agricultural waste corn cob by zinc chloride activation. Bioresources Technol 64:211–217. doi:10.1016/S0960-8524(97)00 168-5

    Article  CAS  Google Scholar 

  • Turnes MI, Mejuto MC, Cela R (1997) Determination of phenolic pollutants in drinking water by capillary electrophoresis in the sample stacking mode. J Chromatogr A 778:279–288. doi:10.1016/S0021-9673(97)00194-5

    Article  Google Scholar 

  • Turves I, García CM, Cela R (1996) Determination of chlorophenols in drinking water with high resolution gas chromatography tandem mass spectrometry. J Chromatogr A 743:283–292. doi:10.1016/0021-9673(96)00301-9

    Article  Google Scholar 

  • Uddin M, Islam M, Abedin M (2007) Adsorption of phenol from aqueous solution by water hyacinth ash. ARPN J Eng Appl Sci 2:11–17

    Google Scholar 

  • USEPA Report (1995) National primary drinking water standards. US Environmental Protection Agency. U.S. Government Printing Office, Washington DC

    Google Scholar 

  • Weber WJ Jr (1985) Adsorption technology. In: Slekjo FL (ed) Step-by-step approach to process evaluation and application. Marcel Dekker, Inc, New York, pp 1–35

    Google Scholar 

  • Wu FC, Tseng RLHCC (2005) Comparisons of pore properties and adsorption performance of KOH-activated and steam-activated carbons. Micropor Mesopor Mater 80:95–106. doi:10.1016/j.micromeso.2004.12.005

    Article  CAS  Google Scholar 

  • Wu FC, Tseng RL, Juang RS (2001) Adsorption of dyes and phenols from water on the activated carbons prepared from corncob wastes. Environ Technol 22:205–213. doi:10.1080/09593332208618296

    Article  CAS  Google Scholar 

  • Yalcın N, Sevinc V (2000) Studies of the surface area and porosity of activated carbons prepared from rice husks. Carbon 38:1943–1945. doi:10.1016/S0008-6223

    Article  Google Scholar 

  • Yan J, Jianping W, Jing B, Daoguan W, Zongding H (2006) Phenol biodegradation by the yeast Candida tropicalis in the presence of m cresol. Biochem Eng J 29:227–234. doi:10.1016/j.bej.2005.12.002

    Article  CAS  Google Scholar 

  • Zhao X, Li JD, Shi YL, Cai YQ, Mou SF, Jiang GB (2007) Determination of perfluorinated compounds in wastewater and river water samples by mixed hemimicelle-based solid phase extraction before liquid chromatography-electrospray tandem mass spectrometry detection. J Chromatogr A 1154:52–59. doi:10.1016/j.chroma.2007.03.093

    Article  CAS  Google Scholar 

  • Zhao RS, Wang X, Yuan JP (2009) Solid-phase extraction of bisphenol A, nonylphenol and 4-octylphenol from environmental water samples using microporous bamboo charcoal, and their determination by HPLC. e Microchim Acta 165:443–447. doi:10.1007/s00604-009-0145-3sin, used as sorbent in a sol

    Article  CAS  Google Scholar 

  • Zhao RS, Wang X, Yuan JP (2010) Highly sensitive determination of tetrabromobisphenol A and bisphenol A in environmental water samples by solid phase extraction and liquid chromatography-tandem mass spectrometry. J Sep Sci 33:1652–1657. doi:10.1002/j.ssc.201000010

    Article  CAS  Google Scholar 

  • Zhou Q, Xiao J, Ding Y (2007a) Sensitive determination of fungicides and prometryn in environmental water samples using multiwalled carbon nanotubes solid phase extraction cartridge. Anal Chim Acta 602:223–228. doi:10.1016/j.aca.2007.098.038

    Article  CAS  Google Scholar 

  • Zhou Q, Ding Y, Xia J (2007b) Simultaneous determination of cyanazine, chlorotoluron and chlorbenzuron in environmental water samples with SPE multiwalled carbon nanotubes and LC. Chromatographia 65:25–30. doi:10.1365/S10337-006-0111-8

    Article  CAS  Google Scholar 

  • Zou AM, Chen XW, Chen ML, Wang JH (2008) Sequential injection reductive bio-sorption of Cr (VI) on the surface of egg shell membrane and chromium speciation with detection by electrothermal atomic absorption spectrometry. J Anal At Spectrom 23:412–415. doi:10.1039/B7145359

    Article  CAS  Google Scholar 

  • Zuo S, Liu J, Yang J, Cai X (2009) Effects of the crystallinity of lignocellulosic material on the porosity of phosphoric acid-activated carbon. Carbon 47:3578–3580. doi:10.1016/j.carbon.2009.08.026

    Article  CAS  Google Scholar 

  • Zvinowanda CM, Okonkwo JO, Sekhula MM, Agyei NM, Sadiku R (2009) Application of maize tassel for the removal of Pb, Se, Sr, U and V from borehole water contaminated with mine wastewater in the presence of alkaline metals. J Hazard Mater 164:884–891. doi:10.1016/j.hazmat.2008.08.110

    Article  CAS  Google Scholar 

  • Żwir-Ferenc A, Biziuk M (2006) Solid phase extraction technique—trends, opportunities and applications. Polish J Environ Stud Vol 15(5):677–690

    Google Scholar 

Download references

Acknowledgment

The authors acknowledge the National Research Foundation (NRF) of South Africa for funding this research project and also Mr. Nyoni Hlengilizwe for assisting with the GC analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. A. M. Msagati.

Additional information

Responsible editor: Philippe Garrigues

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Olorundare, O.F., Msagati, T.A.M., Krause, R.W.M. et al. Preparation and use of maize tassels’ activated carbon for the adsorption of phenolic compounds in environmental waste water samples. Environ Sci Pollut Res 22, 5780–5792 (2015). https://doi.org/10.1007/s11356-014-3742-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-014-3742-6

Keywords

Navigation