Advertisement

Environmental Science and Pollution Research

, Volume 22, Issue 11, pp 8058–8074 | Cite as

Assessing plant protection practices using pressure indicator and toxicity risk indicators: analysis of therelationship between these indicators for improved risk management, application in viticulture

  • Mghirbi OussamaEmail author
  • Ellefi Kamel
  • Le Grusse Philippe
  • Mandart Elisabeth
  • Fabre Jacques
  • Ayadi Habiba
  • Bord Jean-Paul
Crop protection: environment, human health, and biodiversity

Abstract

The excessive use of plant protection products (PPPs) has given rise to issues of public and environmental health because of their toxicity. Reducing the use of toxic PPPs and replacing them with products that are less toxic for human health and the environment have become socially, environmentally and economically indispensable. In this article, we assess the plant protection practices of a small group of winegrowers practicing “integrated agriculture” in the south of France, in order to measure the benefit of using toxicity risk indicators as a decision-support tool for different players in land management. An analysis of plant protection practices using indicators of the risk to operator health and the environment (IRSA, IRTE), together with a frequency-of-treatment indicator (TFI), enabled us to (i) show the variability of these indicators depending on the production system and farmers’ pesticide use strategies and (ii) calculate correlations between these indicators. This analysis of plant protection practices at different scales (farm, field), carried out in collaboration with the growers, enabled us to perform an initial validation of decision-support tools for determining risk management strategies regarding the use of pesticides.

Keywords

Plant protection practices Health indicator Environmental indicator Pest risk management Vineyards 

Notes

Acknowledgments

This work has been carried out under the auspices of the Tram research project ‘Managing Toxicity in the Ramsar region’ (Ecophyto 2018 Plan) and we gratefully acknowledge the financial support provided through the French Ministry of Ecology, Sustainable Development and Energy’s call for pesticide research projects managed by ONEMA (French National Agency for Water and Aquatic Environments). In addition, this work has been supported by the Languedoc-Roussillon Region Laboratory’s ARPE programme. We are also grateful to the Hérault Chamber of Agriculture and the Experimental Horticultural Centre at Marsillargues (CEHM) and the Mixed Syndicate of the Basin de l’Or (SYMBO), Hérault, Languedoc-Roussillon, for their support and cooperation during the project.

References

  1. (FOCUS). FftC-oopfmatU (1997) Soil persistence models and EU registration. The final report of the work of the Soil Modelling Work group of FOCUS (Forum for the Co-ordination of pesticide fate models and their Use)Google Scholar
  2. (FOCUS). FftC-oopfmatU (2001) Surface Water Scenarios in the EU Evaluation Process under 91/414/EEC. Report of the FOCUS Working Group on Surface Water Scenarios, EC Document Reference SANCO/4802/2001-rev.2Google Scholar
  3. (FOCUS). FftC-oopfmatU (2003) Appendix I., Steps 1–2 in FOCUS User Manual, surface water tool for exposure predictions Steps 1 and 2, developed by FOCUSGoogle Scholar
  4. AGRESTE (2011). Première région viticole de France, spécialisée en vins à IGP. AGRESTE, Premières tendances, Données viticulture Languedoc-Roussillon - Novembre 2011. Direction Régionale de l’Alimentation, de l’Agriculture et de la Forêt. Service Régional de l’Information Statistique et Économique. http://www.agreste.agriculture.gouv.fr/IMG/pdf_R9111A18.pdf
  5. Aubertot JN, Barbier JM, Carpentier A, Gril JJ, Guichard L, Lucas P, Savary S, Savini I, Voltz M (2005) Pesticides, agriculture et environnement. Réduire l’utilisation des pesticides et limiter leurs impacts environnementaux. Rapport d'Expertise scientifique collective, INRA and Cemagref (France)Google Scholar
  6. Ayadi H, Le Bars M, Le Grusse P, Mandart E, Fabre J, Bouaziz A, Bord JP (2014) SimPhy: a simulation game to lessen the impact of phytosanitaries on health and the environment—The case of Merja Zerga in Morocco. Environ Sci Pollut Res 21(7):4950–4963CrossRefGoogle Scholar
  7. Ayadi H, Le Grusse P, Fabre J, Mandart E, Bouaziz A, Bord JP (2012) Indicateurs et diagnostic de la pollution phytosanitaire diffuse d’origine agricole : construction d’un indicateur de risque de toxicité environnementale (IRTE). Paper published as an act and presented at the 42nd Congress of the French Pesticides Group (GFP): Nouveaux Enjeux et Stratégies Novatrices pour la Protection des Plantes Cultivées dans un Contexte de Développement Durable, Poitiers, FranceGoogle Scholar
  8. Balderacchi M, Trevisan M (2010) Comments on pesticide risk assessment by the revision of Directive EU 91/414. Environ Sci Pollut Res 17(3):523–528CrossRefGoogle Scholar
  9. Barral M, Sourribes VC, Bourgeois E, Gavoty E, Barré N, Tillier C (2007) Synthèse sur les zones humides françaises, à destination des gestionnaires, élus et acteurs de terrain. Vers une gestion intégrée des lagunes méditerranéennes. Tome 3—Annexes cartographiquesGoogle Scholar
  10. Bohnen NI, Kurland LT (1995) Brain tumor and exposure to pesticides in humans: a review of the epidemiologic data. J Neurol Sci 132(2):110–121CrossRefGoogle Scholar
  11. Butault JP, Delame N, Jacquet F, Zardet G (2011) L’utilisation des pesticides en France : état des lieux et perspectives de réduction. Notes et études socio-économiques, NESE n° 35, pp 7–26Google Scholar
  12. Calvet R (2005) Les pesticides dans le sol: conséquences agronomiques et environnementales. Editions, France AgricoleGoogle Scholar
  13. Champeaux C (2006) Recours à l’utilisation de pesticides en grandes cultures. Évolution de l’indicateur de fréquence de traitement au travers des enquêtes « Pratiques Culturales » du SCEES entre 1994 et 2001. Rapport d’étude commandité par le Ministère d’Agriculture et de Pêche Français (MAP) et l’Institut National de la Recherche Agronomique (INRA), UMR 211 Agronomie Grignon, September 2006Google Scholar
  14. Collin F (2000) "Approche spatiale de la pollution chronique des eaux de surface par les produits phytosanitaires cas de l’atrazine dans le bassin versant de Sousson (Gers, France)". Thèse de doctorat, spécialité science de l’eau. L’unité mixte de recherche Cemgref-ENGREF, "Système et Structure Spatiaux", Montpellier : 232 p+annexes. http://cemadoc.irstea.fr/exl-php/docs/PUB_DOC/9316/2000/MO2000-PUB00009699__PDF.txt
  15. Costello S, Cockburn M, Bronstein J, Zhang X, Ritz B (2009) Parkinson’s disease and residential exposure to maneb and paraquat from agricultural applications in the central valley of California. Am J Epidemiol 169(8):919–926CrossRefGoogle Scholar
  16. Devillers J, Farret R, Girardin P, Rivière JL, Soulas G (2005) Indicateurs pour évaluer les risques liés à l’utilisation des pesticides, Ed Tec et DocGoogle Scholar
  17. Dupré N (2003) Les apports des bassins versants en relations avec l’état d’eutrophisation des lagunes du Languedoc-Roussillon. Application à l’étang de l’Or. Rapport de DESS. Université Montpellier I, II, III. 122 p + annexes