Toxicities of 48 pharmaceuticals and their freshwater and marine environmental assessment in northwestern France

Abstract

A risk assessment for freshwater and marine ecosystems is presented for 48 pharmaceutical compounds, belonging to 16 therapeutic classes, and prescribed in northwestern France. Ecotoxicity data were obtained on two freshwater organisms, i.e., crustacean Daphnia magna and the green algae Pseudokirchneriella subcapitata, and on two marine organisms, i.e., the crustacean Artemia salina and the diatom Skeletonema marinoi. Measured environmental concentrations (MEC), in the Orne River and sea off Merville-Franceville in the Basse-Normandie region, were compared to the predicted environmental concentrations (PEC). Predicted no-effect concentrations (PNEC) were derived from acute data for each compound. Then, a risk assessment for each compound and the mixture was performed by calculating risk quotients (RQ as PEC or MEC/PNEC ratio). Results showed that no immediate acute toxicities were expected even if some compounds displayed strong toxicities at very low concentrations. Antibiotics, antidepressants, and antifungals would deserve attention because of their high or median ecological risk suspected on marine and freshwater ecosystems. Marine ecosystems would be more sensitive to pharmaceutical residues.

This is a preview of subscription content, access via your institution.

Fig. 1

References

  1. Aminot Y (2013) Etude de l’impact des effluents urbains sur la qualité des eaux de la Garonne estuarienne : application aux composés pharmaceutiques et aux filtres UV Thèse de l’Université, n°4961, soutenue le 6/12/2013 (in French)

  2. Backhaus T, Faust M (2012) Predictive environmental risk assessment of chemical mixtures: a conceptual framework. Environ Sci Technol 46:2564–2573

    CAS  Article  Google Scholar 

  3. Backhaus T, Karlsson M (2014) Screening level mixture risk assessment of pharmaceuticals in STP effluents. Water Res 49(1):157–165

    CAS  Article  Google Scholar 

  4. Backhaus T, Altenburger R, Arrhenius A, Blanck H, Faust M, Finizio A, Gramatica P, Grote M, Junghans M, Meyer W, Pavan M, Porsbring T, Scholze M, Todeschini R, Vighi M, Walter H, Grimme LH (2003) The BEAM-project: prediction and assessment of mixture toxicities in the aquatic environment

  5. Besse JP, Garric J (2007) Médicaments à usage humain: risque d’exposition et effets sur les milieux récepteurs. Proposition d’une liste de médicaments à usage humain à surveiller dans les eaux de surfaces continentales, 238 p. Lyon : Agence de l’Eau RMC (in French)

  6. Besse JP, Garric J (2008) Human pharmaceuticals in surface waters implementation of a prioritization methodology and application to the French situation. Toxicol Lett 176:104–123

    CAS  Article  Google Scholar 

  7. Bound JP, Voulvoulis N (2006) Predicted and measured concentrations for selected pharmaceuticals in UK rivers: implications for risk assessment. Water Res 40:2885–2892

    CAS  Article  Google Scholar 

  8. Brambilla G, Civitareale C, Migliore L (1994) Experimental toxicity and analysis of bacitracin, flumequine and sulphadimethoxine in terrestrial and aquatic organisms as a predictive model for ecosystem damage. Quim Anal 13:573–577

    Google Scholar 

  9. Claessens M, Vanhaecke L, Wille K, Janssen CR (2013) Emerging contaminants in Belgian marine waters: single toxicant and mixture risks of pharmaceuticals. Mar Pollut Bull 71:41–50

    CAS  Article  Google Scholar 

  10. Commission of the European Communities (1996) Technical guidance document in support of commission directive 93/67/EEC on risk assessment for new notified substances and commission regulation (EC) No. 1488/94 on risk assessment for existing substances. Part II: environmental risk assessment. Office for Official Publications of the European Communities, Luxembourg

  11. Daughton CG, Ternes TA (1999) Pharmaceuticals and personal care products in the environment: agents of subtle change? Environ Health Perspect 107:907–938

    CAS  Article  Google Scholar 

  12. Dévier MH, Le Ménach K, Viglino L, Di Gioia L, Lachassagne P, Budzinski H (2013) Ultra-trace analysis of hormones, pharmaceutical substances, alkylphenols and phtalates in two French natural mineral waters. Sci Total Environ 443:621–632

    Article  Google Scholar 

  13. ECHA (2008) Guidance on information requirements and chemical safety assessment—part E: risk characterization. Guidance for the implementation of REACH

  14. EMEA (2006) Note for guidance on environmental risk assessment of medicinal products for human use. Doc Ref EMEA/CHMP/SWP/4447/00. Committee for Proprietary Medicinal Products. European Agency for the Evaluation of Medicinal Products, London, UK. http://www.emea.eu.int/pdfs/human/swp/444700en.pdf

  15. Enick OV, Moore MM (2007) Assessing the assessments: pharmaceuticals in the environment. Environ Impact Assess Rev 27:707–729

    Article  Google Scholar 

  16. Fatta-Kassinos D, Meric S, Nikolaou A (2011) Pharmaceutical residues in environmental waters and wastewater: current state of knowledge and future research. Anal Bioanal Chem 399:251–275

    CAS  Article  Google Scholar 

  17. Fent K (2008) Effects of pharmaceuticals on aquatic organisms. In: Kümmerer K (ed) Pharmaceuticals in the environment—sources, fate, effects and risks. Springer-Verlag, pp 174–203

  18. Fent K, Weston AA, Caminada D (2006) Ecotoxicology of human pharmaceuticals. Aquat Toxicol 76:122–159

    CAS  Article  Google Scholar 

  19. Ferrari B, Mons R, Vollat B, Fraysse B, Paxéus N, Lo Giudice R, Pollio A, Garric J (2004) Environmental risk assessment of six human pharmaceuticals: are the current environmental risk assessment procedures sufficient for the protection of the aquatic environment? Environ Toxicol Chem 23(5):1344–1354

    CAS  Article  Google Scholar 

  20. Hernando MD, Mezcua M, Fernández-Alba AR, Barceló D (2006) Environmental risk assessment of pharmaceutical residues in wastewater effluents, surface waters and sediments. Talanta 69:334–342

    CAS  Article  Google Scholar 

  21. Isidori M, Lavorgna M, Nardelli A, Pascarella L, Parrella A (2005) Toxic and genotoxic evaluation of six antibiotics on non-target organisms. Sci Total Environ 346(1–3):87–98

    CAS  Article  Google Scholar 

  22. Jones OAH, Voulvoulis N, Lester JN (2002) Aquatic environmental assessment of the top 25 English prescription pharmaceuticals. Water Res 36:5013–5022

    CAS  Article  Google Scholar 

  23. Kümmerer K (2009) Antibiotics in the aquatic environment—a review—part I. Chemosphere 75:417–434

    Article  Google Scholar 

  24. Marchand M, Tissier C (2005) L’analyse du risqué chimique en milieu marin: l’approche méthodologique européenne. Éd. Ifremer, 126p (in French)

  25. NF EN ISO 10253 (2006) Qualité de l’eau – Essai d’inhibition de la croissance des algues marines avec Skeletonema costatum et Phaedactylum tricornutum (in French)

  26. NF EN ISO 6341 (1996) Qualité de l’eau – Détermination de l’inhibition de la mobilité de Daphnia magna Straus (Cladocera, Crustacea) – Essai de toxicité aigüe (in French)

  27. NF EN ISO 8692 (2012) Qualité de l’eau – Essai d’inhibition de la croissance des algues d’eau douce avec des algues vertes unicellulaires (in French)

  28. OECD guidelines for the testing of chemicals N° 211 (1998) Daphnia magna reproduction test

  29. Richardson SD, Ternes TA (2005) Water analysis: emerging contaminants and current issues. Anal Chem 77:3807–3838

    CAS  Article  Google Scholar 

  30. Sánchez-Fortún S, Sanz F, Santa-María A, Ros JM, De Vicente ML, Encinas MT, Vinagre E, Brahona MV (1997) Acute sensitivity of three age classes of Artemia salina larvae to seven chlorinated solvents. Bull Environ Contam Toxicol 59:445–451

    Article  Google Scholar 

  31. Sanderson H, Johnson DJ, Reitsma T, Brain RA, Wilson CJ, Solomon KR (2004) Ranking and prioritization of environmental risks of pharmaceuticals in surface waters. Regul Toxicol Pharmacol 39:158–183

    CAS  Article  Google Scholar 

  32. Togola A, Budzinski H (2008) Multi-residue analysis of pharmaceutical compounds in aqueous samples. J Chromatogr A 1177:150–158

    CAS  Article  Google Scholar 

  33. Vindimian E (2012) MSExcel Macro Regtox 7.06 Freely available from Eric Vindimian. IRSTEA, France. http://www.normalesup.org/~vindimian (accessed March 2012)

  34. Webb SF (2001) A data-based perspective on the environmental risk assessment of human pharmaceuticals I—collation of available ecotoxicity data. In: Kümmerer K (ed) Pharmaceuticals in the environment: source, fate, effects and risks. Springer, Berlin, pp 317–343

    Google Scholar 

  35. Wheeler JR, Grist EPM, Leung KMY, Morritt D, Crane M (2002) Species sensitivity distributions: data and model choice. Mar Pollut Bull 45:192–202

    CAS  Article  Google Scholar 

Download references

Acknowledgments

This work is a contribution to the Pharm@Ecotox project funded by the French National Research Agency (ANR, fr: Agence Nationale de la Recherche). Ronan Bureau is greatly acknowledged for his help in extrapolation of predicted environmental concentrations.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Laetitia Minguez.

Additional information

Responsible editor: Philippe Garrigues

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Minguez, L., Pedelucq, J., Farcy, E. et al. Toxicities of 48 pharmaceuticals and their freshwater and marine environmental assessment in northwestern France. Environ Sci Pollut Res 23, 4992–5001 (2016). https://doi.org/10.1007/s11356-014-3662-5

Download citation

Keywords

  • Pharmaceuticals
  • Aquatic environment
  • Fate
  • Ecotoxicity
  • PEC
  • MEC
  • Risk