Skip to main content

Prospecting metal-tolerant rhizobia for phytoremediation of mining soils from Morocco using Anthyllis vulneraria L.

Abstract

The aim of this work was using the legume plant Anthyllis vulneraria L. (ecotype metallicolous) as a trap plant, in order to isolate metal-tolerant rhizobial strains from metal-contaminated soils from Morocco, with pollution indexes spanning three orders of magnitude. As bioindicator, soil bacterial density was inversely correlated to the pollution index. Forty-three bulk soil bacteria and sixty two bacteria from nodules were isolated. The resistance of bacteria from nodules to heavy metals was four to ten times higher than that of bulk soil bacteria, reaching high maximum tolerable concentrations for Cd (2 mM), Cu (2 mM), Pb (7 mM), and Zn (3 mM). Besides, some strains show multiple metal-tolerant abilities and great metal biosorption onto the bacterial surface. Amplification and restriction analysis of ribosomal 16S rDNA (ARDRA) and 16S ribosomal DNA (rDNA) sequencing were used to assess biodiversity and phylogenetic position among bacteria present in nodules. Our results suggest that a great diversity of non-rhizobial bacteria (alpha- and gamma-proteobacteria) colonize nodules of Anthyllis plants in contaminated soils. Taking together, our results evidence that, in polluted soils, rhizobia can be displaced by non-rhizobial (and hence, non-fixing) strains from nodules. Thus, the selection of metal-resistant rhizobia is a key step for using A. vulneraria symbioses for in situ phytoremediation.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Abbreviations

ARDRA:

Amplification and restriction analysis of ribosomal 16S rDNA

EDTA:

Ethylene-diamino tetraacetic acid

ICP-MS:

Inducted coupled plasma mass spectrometry

PI:

Pollution index

MTC:

Maximal tolerable concentration

NB:

Nutrient broth

RFLP:

Restriction fragment length polymorphism

16S rDNA:

DNA coding for ribosomal 16S RNA

TY:

Tryptone-yeast extract

YEM:

Yeast extract mannitol

References

  • Abou-Shanab RA, Angle JS, Delorme TA, Chaney RL, Van Berkum P, Moawad H, Ghanem K, Ghozlan HA (2003) Rhizobacterial effects on nickel extraction from soil and uptake by Alyssum murale. New Phytol 158(1):219–224. doi:10.1046/j.1469-8137.2003.00721.x

    Article  CAS  Google Scholar 

  • Ampomah OY, Huss-Danell K (2011) Genetic diversity of root nodule bacteria nodulating Lotus corniculatus and Anthyllis vulneraria in Sweden. Syst Appl Microbiol 34(4):267–275. doi:10.1016/j.syapm.2011.01.006

    Article  Google Scholar 

  • Bais HP, Broeckling CD, Vivanco JM (2008) Root exudates modulate plant—microbe interactions in the rhizosphere. In: Karlosky P (ed) Secondary Metabolites in Soil Ecology, Soil Biology 14. Springer-Verlag, Berlin Heidelger, pp 241–252. doi:10.1007/978-3-540-74543-3_11

    Chapter  Google Scholar 

  • Baker AJM, Brooks RR (1989) Terrestrial higher plants which hyperaccumulate metallic elements: a review of their distribution, ecology and phytochemistry. Biorecovery 1:81–126. doi:10.3923/jest.2011.118.138

    CAS  Google Scholar 

  • Benhizia Y, Benhizia H, Benguedouar A, Muresu R, Giacomini A, Squartini A (2004) Gamma proteobacteria can nodulate legumes of the genus Hedysarum. Syst Appl Microbiol 27:462–468. doi:10.1078/0723202041438527

    Article  CAS  Google Scholar 

  • Bennisse R, Labat M, El Asli A, Brhada F, Chandad F, Lorquin J, Liegbott P, Hibti M, Qatibi A (2004) Rhizosphere bacterial populations of metallophyte plants in heavy metal-contaminated soils from mining areas in semiarid climate. World J Microbiol Biotechnol 20:759–766. doi:10.1007/s11274-004-5812-2

    Article  CAS  Google Scholar 

  • Burd GI, Dixon DG, Glick BR (2000) Plant growth-promoting bacteria that decrease heavy metal toxicity in plants. Can J Microbiol 46:237–245. doi:10.1139/w99-143

    Article  CAS  Google Scholar 

  • Callahan DL, Baker AJM, Kolev S, Wedd AG (2006) Metal ion ligands in hyperaccumulating plants. J Biol Inorg Chem 11:2–12. doi:10.1007/s00775-005-0056-7

    Article  CAS  Google Scholar 

  • Carrasco JA, Armario P, Pajuelo E, Burgos A, Caviedes MA, López R, Chamber MA, Palomares AJ (2005) Isolation and characterisation of symbiotically effective Rhizobium resistant to arsenic and heavy metals after the toxic spill at the Aznalcollar pyrite mine. Soil Biol Biochem 37:1131–1140. doi:10.1016/j.soilbio.2004.11.015

    Article  CAS  Google Scholar 

  • Casida LEJ (1982) Ensifer adhaerens gen nov. sp. nov.: a bacterial predator of bacteria in soil. Int J Syst Bacteriol 32:339–345. doi:10.1099/00207713-32-3-339

    Article  Google Scholar 

  • Chen WM, James EK, Prescott AR, Kierans M, Sprent JI (2003) Nodulation of Mimosa spp. by the beta-proteobacterium Ralstonia taiwanensis. Mol Plant Microbe Interact 16:1051–1061. doi:10.1094/MPMI.2003.16.12.1051

    Article  CAS  Google Scholar 

  • Chen WM, Wu CH, James EK, Chang JS (2008) Metal biosorption capability of Cupriavidus taiwanensis and its effects on heavy metal removal by nodulated Mimosa pudica. J Hazard Mater 115:364–371. doi:10.1016/j.jhazmat.2007.05.082

    Article  CAS  Google Scholar 

  • Chon HT, Kim KW, Kim JY (1995) Metal contamination of soils and dusts in Seoul metropolitan city, Korea. Environ Geochem Health 17:139–146. doi:10.1007/BF00126082

    Article  CAS  Google Scholar 

  • Coba de la Peña T, Pueyo JJ (2012) Legumes in the reclamation of marginal soils, from cultivar and inoculant selection to transgenic approaches. Agron Sustain Dev. doi:10.1007/s13593-011-0024-2

    Google Scholar 

  • Dary M, Chamber MA, Palomares AJ, Pajuelo E (2010) “In situ” phytostabilisation of heavy metal polluted soils using Lupinus luteus inoculated with metal resistant plant-growth promoting rhizobacteria. J Hazard Mater 177:323–330. doi:10.1016/j.jhazmat.2009.12.035

    Article  CAS  Google Scholar 

  • de Bashan LE, Hernandez JP, Bashan Y (2012) The potential contribution of plant growth-promoting bacteria to reduce environmental degradation – A comprehensive evaluation. Appl Soil Ecol 61:171–189. doi:10.1016/j.apsoil.2011.09.003

    Article  Google Scholar 

  • El Aafi N, Brhada F, Dary M, Filali-Maltouf A, Pajuelo E (2012) Rhizostabilization of metals in soils using Lupinus luteus inoculated with the metal resistant rhizobacterium Serratia sp. MSMC541. Int J Phytorem 14(3):261–274. doi:10.1080/15226514.2011.604693

    Article  CAS  Google Scholar 

  • El Hachimi ML, El Hanbali M, Fekhaoui M, Bouabdli, El Founti L, Saidi N (2005) Impact d’un site minier abandonné sur l’environnement: cas de la mine de Zeida (haute Moulouya, Maroc). Bull Inst Sci Rabat 27: 93–100. doi: http://www.israbat.ac.ma/html/PublicationsIS/BIS_ST_27/ElHachimi.pdf, (in french)

  • El Himer S, Bouabdli A, Baghdad B, Saidi N. 2012. Contamination by trace metals (ETM) assessment of the plants populating the dump mining Zaida (High Moulouya, Morocco). J Res Agric 1: 49–54. doi: http://www.jagri.info/documents/AG0019.pdf

  • Elliott GN, Chou JH, Chen WM, Bloemberg GV, Bontemps C, Martínez-Romero E, Velázquez E, Young JP, Sprent JI, James EK (2009) Burkholderia spp. are the most competitive symbionts of Mimosa, particularly under N-limited conditions. Environ Microbiol 11:762–778. doi:10.1111/j.1462-2920.2008.01799.x

    Article  Google Scholar 

  • Ernst WHO (2006) Evolution of metal tolerance in higher plants. For Snow Landsc Res 80(3): 251–274. doi: http://www.wsl.ch/dienstleistungen/publikationen/pdf/7764.pdf

  • Escarré J, Lefèbvre C, Raboyeau S, Dos Santos A, Gruber W, Cleyet-Marel JC, Frérot H, Noret N, Mahieu S, Collin C, van Oort F (2011) Heavy metal concentration survey in soils and plants of the Les Malines mining district (Southern France): implications for soil restoration. Water Air Soil Pollut 216:485–504. doi:10.1007/s11270-010-0547-1

    Article  CAS  Google Scholar 

  • Fan LM, Ma ZQ, Liang JQ, Li HF, Wang ET, Wei GH (2011) Characterization of a copper-resistant symbiotic bacterium isolated from Medicago lupulina growing in mine tailings. Bioresour Technol 102:703–709. doi:10.1016/j.biortech.2010.08.046

    Article  CAS  Google Scholar 

  • Frérot H, Lefèbvre C, Gruber W, Collin C, Dos Santos A, Escarré J (2006) Specific interactions between local metallicolous plants improve the phytostabilization of mine soils. Plant Soil 282:53–65. doi:10.1007/s11104-005-5315-4

    Article  CAS  Google Scholar 

  • Fterich A, Mahdhi M, Caviedes MA, Pajuelo E, Rivas R, Rodriguez-Llorente ID, Mars M (2011) Characterization of root-nodulating bacteria associated to Prosopis farcta growing in the arid regions of Tunisia. Arch Microbiol 193(6):385–397. doi:10.1007/s00203-011-0683-z

    Article  CAS  Google Scholar 

  • Giller KE, Witter E, Mcgrath SP (1998) Toxicity of heavy metals to microorganisms and microbial processes in agricultural soils: a review. Soil Biol Biochem 30:1389–1414. doi:10.1016/S0038-0717(97)00270-8

    Article  CAS  Google Scholar 

  • Glick BR (2010) Using soil bacteria to facilitate phytoremediation. Biotechnol Adv 28:367–374. doi:10.1016/j.biotechadv.2010.02.001

    Article  CAS  Google Scholar 

  • Goethals K, Vereecke D, Jaziri M, Van Montagu M, Holsters M (2001) Leafy gall formation by Rhodococcus fascians. Ann Rev Phytopathol 39:27–52. doi:10.1146/annurev.phyto.39.1.27

    Article  CAS  Google Scholar 

  • Graham PH, Vance CP (2003) Legumes: importance and constraints to greater use. Plant Physiol 131:872–877. doi:10.1104/pp.017004

    Article  CAS  Google Scholar 

  • Hao X, Taghavi S, Xie P, Orbach MJ, Alwathnani HA, Rensing C, Wei GH (2014) Phytoremediation of Heavy and Transition Metals Aided by Legume-Rhizobia Symbiosis. Int J Phytorem 16:179–202. doi:10.1080/15226514.2013.773273

    Article  CAS  Google Scholar 

  • Herrera-Cervera JA, Caballero-Mellado J, Laguerre G, Tichy HV, Requena N, Amarger N, Martinez-Romero E, Olivares J, Sanjuan J (1999) At least five rhizobial species nodulate Phaseolus vulgaris in a Spanish soil. FEMS Microbiol Ecol 30:87–97. doi:10.1111/j.1574-6941.1999.tb00638.x

    Article  CAS  Google Scholar 

  • Hong-Bo S, Li-Ye C, Cheng-Jiang R, Hua L, Dong-Gang G, Wei-Xiang L (2010) Understanding molecular mechanisms for improving phytoremediation of heavy metal-contaminated soils. Crit Rev Biotechnol 30(1):23–30. doi:10.3109/07388550903208057

    Article  CAS  Google Scholar 

  • Hoque MS, Broadhurst LM, Thrall PH (2011) Genetic characterization of root-nodule bacteria associated with Acacia salicina and A. stenophylla (Mimosaceae) across south-eastern Australia. Int J Syst Evol Microbiol 61:299–309. doi:10.1099/ijs.0.021014-0

    Article  CAS  Google Scholar 

  • Ibáñez F, Angelini J, Taurian T, Tonelli ML, Fabra A (2009) Endophytic occupation of peanut root nodules by opportunistic Gamma proteobacteria. Syst Appl Microbiol 32:49–55. doi:10.1016/j.syapm.2008.10.001

    Article  CAS  Google Scholar 

  • Ike A, Sriprang R, Ono H, Mitsuo YM (2007) Bioremediation of cadmium contaminated soil using symbiosis between leguminous plant and recombinant rhizobia with the MTL4 and the PCS genes. Chemosphere 66:1670–1676. doi:10.1016/j.chemosphere.2006.07.058

    Article  CAS  Google Scholar 

  • Jarvis BDW, Pankhurst CE, Patel JJ (1982) Rhizobium loti, a new species of legume root nodule bacteria. Int J Syst Bacteriol 32:378–380. doi:10.1099/00207713-32-3-378

    Article  Google Scholar 

  • Jing YD, He ZL, Yang X (2007) Role of soil rhizobacteria in phytoremediation of heavy metal contaminated soils. J Zhejiang Univ Sci B 8(3):192–207. doi:10.1631/jzus.2007.B0192

    Article  CAS  Google Scholar 

  • Jourand P, Giraud E, Béna G, Sy A, Willems A, Gillis M, Dreyfus B, de Lajudie P (2004) Methylobacterium nodulans sp. nov., for a group of aerobic, facultatively methylotrophic, legume root nodule-forming and nitrogen-fixing bacteria. Int J Syst Evol Microbiol 54:2269–2273. doi:10.1099/ijs.0.02902-0

    Article  CAS  Google Scholar 

  • Kabata-Pendias A, Pendias H (1984) Trace elements in soils and plants. CRC Press, Boca Raton, 315 pp. ISBN 0-8493-6639-9

    Google Scholar 

  • Kotrba P, Doleckova L, de Lorenzo V, Ruml T (1999) Enhanced bioaccumulation of heavy metal ions by bacterial cells due to surface display of short metal binding peptides. Appl Environ Microbiol 65(3): 1092–1098. http://aem.asm.org/content/65/3/1092

  • Laguerre G, Nour SM, Macheret V, Sanjuan J, Drouin P, Amarger N (2001) Classification of rhizobia based on nodC and nifH gene analysis reveals a close phylogenetic relationship among Phaseolus vulgaris symbionts. Microbiology 147: 981–993. http://mic.sgmjournals.org/content/147/4/981.long

  • Lasat MM (2000) Phytoextraction of metals from contaminated soil: a review of plant/soil/metal interaction and assessment of pertinent agronomic issues. J Hazard Subs Res 2(5): 1–25. http://www.engg.ksu.edu/HSRC/JHSR/vol2no5.pdf

  • LeDuc DL, Terry N (2005) Phytoremediation of toxic trace elements in soil and water. J Ind Microbiol Biotechnol 32:514–520. doi:10.1007/s10295-005-0227-0

    Article  CAS  Google Scholar 

  • Ma Y, Prasad MN, Rajkumar M, Freitas H (2011) Plant growth promoting rhizobacteria and endophytes accelerate phytoremediation of metalliferous soils. Biotechnol Adv 29(2):248–258. doi:10.1016/j.biotechadv.2010.12.001

    Article  CAS  Google Scholar 

  • MacGrath SP, Chaudri AM, Giller KE (1995) Long-term effects of metals in sewage sludge on soils, microorganisms and plants. J Ind Microbiol 14:94–104. doi:10.1007/BF01569890

    Article  Google Scholar 

  • Macnair MR (1993) The genetics of metal tolerance in vascular plants. New Phytol 124:541–559. doi:10.1111/j.1469-8137.1993.tb03846.x

    Article  CAS  Google Scholar 

  • Mahieu S, Frérot H, Vidal C, Galiana A, Heulin K, Maure L, Brunel B, Lefèbvre C, Escarré J, Cleyet-Marel JC (2011) Anthyllis vulneraria/Mesorhizobium metallidurans, an efficient symbiotic nitrogen fixing association able to grow in mine tailings highly contaminated by Zn, Pb and Cd. Plant Soil 342:405–417. doi:10.1007/s11104-010-0705-7

    Article  CAS  Google Scholar 

  • Maynaud G, Willems A, Soussou S, Vidal C, Mauré L, Moulin L, Cleyet-Marel JC, Brunel B (2012) Molecular and phenotypic characterization of strains nodulating Anthyllis vulneraria in mine tailings, and proposal of Aminobacter anthyllidis sp. nov., the first definition of Aminobacter as legume-nodulating bacteria. Syst Appl Microbiol 35(2):65–72. doi:10.1016/j.syapm.2011.11.002

    Article  CAS  Google Scholar 

  • Mendez MO, Maier RM (2008) Phytostabilisation of mine tailings in arid and semiarid environments: an emerging remediation technology. Environ Health Perspect 116:278–283. doi:10.1289/ehp.10608

    Article  CAS  Google Scholar 

  • Pajuelo E, Carrasco JA, Romero LC, Chamber MA, Gotor C (2007) Evaluation of the metal phytoextraction potential of crop legumes. Regulation of the expression of O-acetylserine (thiol) lyase under metal stress. Plant Biol 9: 672–681. http://www.ncbi.nlm.nih.gov/pubmed/17853367

  • Pajuelo E, Rodriguez-Llorente ID, Lafuente A, Caviedes MA (2011) Legume–Rhizobium symbioses as a tool for bioremediation of heavy metal polluted soils. In: Khan MS, Zaidi A, Goel R, Musarrat J (eds) Biomanagement of metal-contaminated soils. Environmental Pollution 20. Springer, Netherlands, pp 95–123. doi:10.1007/978-94-007-1914-9_4

    Chapter  Google Scholar 

  • Pastor J, Hernandez AJ, Prieto N, Fernandez-Pascual M (2003) Accumulating behaviour of Lupinus albus L. growing in a normal and a decalcified calcic luvisol polluted with Zn. J Plant Physiol 160:1457–1465. doi:10.1078/0176-1617-01007

    Article  CAS  Google Scholar 

  • Peng JF, Song YH, Yuan P, Cui XY, Qiu GL (2009) The remediation of heavy metals contaminated sediment. J Hazard Mater 161:633–640. doi:10.1016/j.jhazmat.2008.04.061

    Article  CAS  Google Scholar 

  • Perriere G, Gouy M (1996) WWW-query: an on-line retrieval system for biological sequence banks. Biochimie 78:364–369. doi:10.1016/03009084(96)84768-7

    Article  CAS  Google Scholar 

  • Pilon-Smits E (2005) Phytoremediation. Annu Rev Plant Biol 56:15–39. doi:10.1146/annurev.arplant.56.032604.144214

    Article  CAS  Google Scholar 

  • Prasad MNV, Freitas HMD (2003) Metal hyperaccumulation in plants -Biodiversity prospecting for phytoremediation technology. Electron J Biotechnol 93(1):285–321. doi:10.2225/vol6-issue3-fulltext-6

    Google Scholar 

  • Rascio W (1977) Metal accumulation by some plants growing on Zn mine deposits. Oikos 29: 250–253. http://www.jstor.org/stable/3543610

  • Reichman SM (2007) The potential use of the legume-Rhizobium symbiosis for the remediation of arsenic contaminated sites. Soil Biol Biochem 39:2587–2593. doi:10.1016/j.soilbio.2007.04.030

    Article  CAS  Google Scholar 

  • Rivas R, Willems A, Subba-Rao NS, Mateos PF, Dazzo FB, Kroppenstedt RM, Martínez-Molina E, Gillis M, Velázquez E (2003) Description of Devosia neptuniae sp. nov. that nodulates and fixes nitrogen in symbiosis with Neptunia natans, an aquatic legume from India. Syst Appl Microbiol 26:47–53. doi:10.1078/072320203322337308

    Article  CAS  Google Scholar 

  • Rivas R, García-Fraile P, Velázquez E (2009) Taxonomy of bacteria nodulating legumes. Microbiol Insights 2: 51–69. http://www.cabdirect.org/abstracts/20113352133.html

  • Rodriguez-Llorente ID, Gamane D, Lafuente A, Dary M, El Hamdaoui A, Delgadillo J, Doukkali B, Caviedes MA, Pajuelo E (2010) Cadmium biosorption properties of the metal resistant Ochrobactrum cytisi Azn6.2. Eng Life Sci 10(1):49–56. doi:10.1002/elsc.200900060

    Article  CAS  Google Scholar 

  • Rogel AM, Hernández-Lucas IL, Kuykendall D, Balkwill DL, Martinez-Romero E (2001) Nitrogen-Fixing Nodules with Ensifer adhaerens Harboring Rhizobium tropici Symbiotic Plasmids. Appl Environ Microbiol 67(7):3264–3268. doi:10.1128/AEM.67.7.3264-3268.2001

    Article  CAS  Google Scholar 

  • Ruiz-Díez B, Quiñones MA, Fajardo S, López MA, Higueras P, Fernández-Pascual M (2012) Mercury-resistant rhizobial bacteria isolated from nodules of leguminous plants growing in high Hg-contaminated soils. Appl Microbiol Biotechnol 96(2):543–554. doi:10.1007/s00253-011-3832-z

    Article  CAS  Google Scholar 

  • Saidi N, Brhada F, Zaida A, Bouabdli A, Escarre J (2002) Impact of the mine Aouli ecosystem at the High Moulouya (Morocco). Bull Soc Hits Nat Toulouse 138: 21–27. http://jagri.info/documents/AG0019.pdf

  • Sawada H, Kuykendall LD, Young JM (2003) Changing concepts in the systematics of nitrogen-fixing legume symbionts. J Gen Appl Microbiol 49: 155–179. http://jlc.jst.go.jp/JST.JSTAGE/jgam/49.155

  • Shukla KP, Sharma S, Singh NK, Singh V, Tiwari K, Singh S (2011) Nature and role of root exudates: efficacy in bioremediation. African J Biotechnol 10(48):9717–9724. doi:10.5897/AJB10.2552

    Google Scholar 

  • Sriprang R, Hayashi M, Yamashita M, Ono H, Saeki K, Murooka Y (2002) A novel bioremediation system for heavy metals using the symbiosis between leguminous plant and genetically engineered rhizobia. J Biotechnol 99:279–293. doi:10.1016/S0168-1656(02)00219-5

    Article  CAS  Google Scholar 

  • Tak HI, Ahmad F, Babalola OO (2013) Advances in the application of plant growth-promoting rhizobacteria in phytoremediation of heavy metals. In: Whitacre D (ed) Reviews on Environmental Contamination and Toxicology 223. Springer Science+Business Media, New Cork, pp 33–52. doi:10.1007/978-1-4614-5577-6_2

    Chapter  Google Scholar 

  • Trujillo ME, Willems A, Abril A, Planchuelo AM, Rivas R, Ludeña D, Mateos PF, Martínez-Molina E, Velázquez E (2005) Nodulation of Lupinus albus by strains of Ochrobactrum lupini sp. nov. Appl Environ Microbiol 71:1318–1327. doi:10.1128/AEM.71.3.1318-1327.2005

    Article  CAS  Google Scholar 

  • Valdés B, Rejdali M, Achal El Kadmiri A, Jury SL, Montserrat JM (eds) (2002) Checklist of vascular plants of N. Morocco with identification keys. Consejo Superior de Investigaciones Científicas, vols. I & II. ISBN: 8400080718

  • Valverde A, Fterich A, Mahdhi M, Ramirez-Bahena MH, Caviedes MA, Mars M, Velazquez E, Rodriguez-Llorente ID (2010) Paenibacillus prosopidis sp. nov., isolated from the nodules of Prosopis farcta. Int J Syst Evol Microbiol 60:2182–2186. doi:10.1099/ijs.0.014241-0

    Article  CAS  Google Scholar 

  • Vázquez S, Agha R, Granado A, Sarro M, Esteban E, Peñalosa J, Carpena R (2006) Use of white lupin plant for phytostabilization of Cd and As polluted acid soil. Water Air Soil Pollut 177:349–365. doi:10.1007/s11270-006-9178-y

    Article  CAS  Google Scholar 

  • Vidal C, Brunel B, Maure L, Escarré J, Béna G, Cleyet-Marel JC (2008) Anthyllis vulneraria - Rhizobium symbiosis, an interaction adapted to colonize and stabilize heavy metal contaminated soils. Poster presentation at the 12th International Sympossium on Microbial Ecology. Poster Board Number: 0334. http://www.kenes.com/isme12/posters/1264.htm

  • Vidal C, Chantreuil C, Berge O, Mauré L, Escarré J, Béna G, Brune B, Cleyet-Marel JC (2009) Mesorhizobium metallidurans sp. nov., a metal resistant symbiont of Anthyllis vulneraria growing on metallicolous soil in Languedoc, France. Int J Syst Evol Microbiol 59:850–855. doi:10.1099/ijs.0.003327-0

    Article  CAS  Google Scholar 

  • Vincent JM (1970) A manual for the practical study of root nodule bacteria. International Biological Programme Handbook, number 15. Blackwell Scientific Publications Ltd. Oxford (England). http://trove.nla.gov.au/version/45249216

  • Volesky B (2007) Biosorption and me. Water Res 41:4017–4029. doi:10.1016/j.watres.2007.05.062

    Article  CAS  Google Scholar 

  • Wani PA, Khan MS, Zaidi A (2008) Chromium-reducing and plant growth-promoting Mesorhizobium improves chickpea growth in chromium-amended soil. Biotechnol Lett 30:159–163. doi:10.1007/s10529-007-9515-2

    Article  CAS  Google Scholar 

  • Weir BS (2009). The current taxonomy of rhizobia. New Zealand rhizobia website. Available at http://www.rhizobia.co.nz/taxonomy/rhizobia.htlm

  • Wenzel WW (2009) Rhizosphere processes and management in plant-assisted bioremediation (phytoremediation) of soils. Plant and Soil 312:385–408

  • Weyens N, van der Lelie D, Taghavi S, Newman L, Vangronsveld J (2009) Exploiting plant-microbe partnerships to improve biomass production and remediation. Trends Biotechnol 10:591–598. doi:10.1016/j.tibtech.2009.07.006

    Article  CAS  Google Scholar 

  • Yu J, Fan L, Yang S, Tang M, Yang W, Li H, Wei G (2009) Characterization of copper-resistant Agrobacterium isolated from legume nodule in mining tailings. Bull Environ Contam Toxicol 82:354–357. doi:10.1007/s00128-008-9598-z

    Article  CAS  Google Scholar 

  • Zaidi S, Usmani S, Singh BR, Musarrat J (2006) Significance of Bacillus subtilis strain SJ-101 as a bioinoculant for concurrent plant growth promotion and nickel accumulation in Brassica juncea. Chemosphere 64:991–997. doi:10.1016/j.chemosphere.2005.12.057

    Article  CAS  Google Scholar 

  • Zhang X, Harper R, Karsisto M, Lindström K (1991) Diversity of Rhizobium bacteria isolated from the root nodules of leguminous trees. Int J Syst Bacteriol 41:104–113. doi:10.1099/00207713-41-1-104

    Article  Google Scholar 

  • Zhuang X, Chen J, Shim H, Bai Z (2007) New advances in plant growth-promoting rhizobacteria for bioremediation. Environ Int 33:406–413. doi:10.1016/j.envint.2006.12.005

    Article  Google Scholar 

  • Zurdo-Piñeiro JL, Rivas R, Trujillo ME, Vizcaíno N, Carrasco JA, Chamber M, Palomares A, Mateos PF, Martínez-Molina E, Velázquez E (2007) Ochrobactrum cytisi sp. nov., isolated from nodules of Cytisus scoparius in Spain. Int J Syst Evol Microbiol 57:784–788. doi:10.1099/ijs.0.64613-0

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by the Project AI. Morocco-Spanish: 152/P/03 – N°A/6232/06, Project Aire Developpement IRD: 01/2 – MAR – 28 – 1 and project P11-RNM-7274 by Junta de Andalucia (Spain).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Pajuelo.

Additional information

Responsible editor: Philippe Garrigues

NB. This paper is dedicated to the memory of Prof. Fatiha Brhada who died in February 2013.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Figure S1

(PPT 567 kb)

Figure S2

(PPT 1253 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

El Aafi, N., Saidi, N., Maltouf, A.F. et al. Prospecting metal-tolerant rhizobia for phytoremediation of mining soils from Morocco using Anthyllis vulneraria L.. Environ Sci Pollut Res 22, 4500–4512 (2015). https://doi.org/10.1007/s11356-014-3596-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-014-3596-y

Keywords

  • Bioremediation
  • Legumes
  • Rhizobium
  • Nodulation
  • Alpha-proteobacteria
  • Gamma-proteobacteria
  • Heavy metal resistance
  • Biosorption