Skip to main content

Chitosan-induced antiviral activity and innate immunity in plants

Abstract

Immunity represents a trait common to all living organisms, and animals and plants share some similarities. Therefore, in susceptible host plants, complex defence machinery may be stimulated by elicitors. Among these, chitosan deserves particular attention because of its proved efficacy. This survey deals with the antiviral activity of chitosan, focusing on its perception by the plant cell and mechanism of action. Emphasis has been paid to benefits and limitations of this strategy in crop protection, as well as to the potential of chitosan as a promising agent in virus disease control.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2

Abbreviations

ABA:

Abscisic acid

AIDS:

Acquired immunodeficiency syndrome

AMV:

Alfalfa mosaic virus

TBSV:

Bean/tomato bushy stunt virus

CaMV:

Cauliflower mosaic virus

CERK1:

Chitin elicitor receptor-like kinase

CEBiP:

Chitin elicitor-binding protein

CHT:

Chitosan

CC:

Coiled-coil

DD:

Deacetylation degree

HAMPs or DAMPs:

Host- or damage-associated molecular patterns

HR:

Hypersensitive reaction

ISR:

Induced systemic resistance

TIR:

Interleukin-1 receptor

JA:

Jasmonic acid

LRR:

Leucine-rich repeat

LAR:

Local acquired resistance

MAPK activation:

Mitogen-activated protein kinase

MW:

Molecular weight

NPR1:

Non-expressor of PR-1

NB:

Nucleotide binding

PAMPs or MAMPs:

Pathogen- or microbe-associated molecular patterns

PR-10:

Pathogenesis-related protein 10

PRRs:

Pattern recognition receptors

PD:

Polymerization degrees

PSTV:

Potato spindle tuber viroid

PVX:

Potato virus X

PCD:

Programmed death of plant cells

RaMV:

Radish mosaic virus

RNS:

Reactive nitrogen species

ROS:

Reactive oxygen species

RLKs:

Receptor-like kinases

RLPs:

Receptor-like proteins

SA:

Salicylic acid

SAR:

Systemic acquired resistance

TMV:

Tobacco mosaic virus

TNV:

Tobacco necrosis virus

TuMPV:

Turnip mosaic virus

BABA-IR:

β-Aminobutyric acid-induced resistance

References

  • Agrios GN (2005) Plant Pathology Fifth Edition: Elsevier, Burlington

  • Amborabé B-E, Bonmort J, Fleurat-Lessard P, Roblin G (2008) Early events induced by chitosan on plant cells. J Exp Bot 59:2317–2324

    Article  Google Scholar 

  • Badawy MEJ, Rabea EI (2011) A biopolymer chitosan and its derivatives as promising antimicrobial agents against plant pathogens and their applications in crop protection. Int J Carbohydr Chem. doi:10.1155/2011/460381

    Google Scholar 

  • Baureithel K, Felix G, Boller T (1994) Specific high affinity binding of chitin fragments to tomato cells and membranes competitive inhibition of binding by derivatives of chitin fragments and a nod factor of Rhizobium. J Biol Chem 269:17931–17938

    CAS  Google Scholar 

  • Buonaurio R, Iriti M, Romanazzi G (2009) Induced resistance to plant diseases caused by oomycetes and fungi. Petria 19:125–149

    Google Scholar 

  • Cabrera JC, Van Cutsem P (2005) Preparation of chitooligosacchar ides with degree of polymerization higher than 6 by acid or enzymatic degradation of chitosan. Biochem Eng J 25:165–172

    CAS  Article  Google Scholar 

  • Carrington JG, Kasschau KD, Mahajan SK, Schaad MC (1996) Cell-to-cell and long-distance transport of viruses in plants. Plant Cell 8:1669–1681

    CAS  Article  Google Scholar 

  • Chen H-P, Xu LL (2005) Isolation and characterization of a novel chitosan-binding protein from non-heading Chinese cabbage leaves. J Integr Plant Biol 47:452–456

    CAS  Article  Google Scholar 

  • Chirkov SN (2002) The antiviral activity of chitosan. App Biochem Microbiol 38:1–8

    CAS  Article  Google Scholar 

  • Chirkov SN, Surguchova N, Atabekov JG (1994) Chitosan inhibits systemic infections caused by DNA-containing plant viruses. Arch Phytopathol Plant Prot 29:21–24

    CAS  Article  Google Scholar 

  • Chirkov SN, Surguchova N, Gamzazade AI, Abdulabekov IM, Pospieszny HA (1998) Comparative efficiency of chitosan derivatives as inhibitors of viral infection in plants. Doklady Rossi Akademii Nauk 360:271–273

    CAS  Google Scholar 

  • Chirkov SN, Il’ina AV, Surgucheca NA, Letunova EV, Varitsev YA, Tatarinova NY, Varlamov VP (2001) Effect of chitosan on systemic viral infection and some defense responses in potato plants. Russ J Plant Physiol 48:774–779

    CAS  Article  Google Scholar 

  • Davydova VN, Nagorskaya VP, Gorbach VI, Kalitnik AA, Reunov AV, Solov’eva TF, Ermak IM (2011) Chitosan antiviral activity: dependence on structure and depolymerization method. App Biochem Microbiol 47:103–108

    CAS  Article  Google Scholar 

  • Day RB, Okada M, Ito Y, Tsukada K, Zaghouani H, Shibuya N, Stacey G (2001) Binding site for chitin oligosaccharides in the soybean plasma membrane. Plant Physiol 126:1162–1173

    CAS  Article  Google Scholar 

  • Delaunois B, Farace G, Jeandet P, Clément C, Baillieul F, Dorey S, Cordelier S (2014) Elicitors as alternative strategy to pesticides in grapevine? Current knowledge on their mode of action from controlled conditions to vineyard. Environ Sci Pollut Res 21:4837–4846

    Article  Google Scholar 

  • Doares SH, Syrovets T, Weiler EW, Ryan CA (1995) Oligogalacturonides and chitosan activate plant defence genes through the octadecanoid pathway. PNAS 92:4095–4098

    CAS  Article  Google Scholar 

  • El Hadrami A, Adam LR, El Hadrami I, Daayf F (2010) Chitosan in plant protection. Mar Drugs 8:968–887

    Article  Google Scholar 

  • Falcón-Rodríguez AB, Wégria G, Cabrera J-C (2012) Exploiting plant innate immunity to protect crops against biotic stress: chitosaccharides as natural and suitable candidates for this purpose. In: Bandani ER (ed) New perspective in plant protection. InTech

  • Faoro F, Iriti M (2006) Cell death or not cell death: two different mechanisms for chitosan and BTH antiviral activity. IOBC/WPRS Bull 28:25–29

    Google Scholar 

  • Faoro F, Iriti M (2007) Callose synthesis as a tool to screen chitosan efficacy in inducing plant resistance to pathogens. Caryologia 60:121–124

    Article  Google Scholar 

  • Faoro F, Iriti M (2009) Induction of resistance to virus diseases. Petria 19:149–172

    Google Scholar 

  • Faoro F, Sant S, Iriti M, Maffi D, Appiano A (2001) Chitosan-elicited resistance to plant viruses: a histochemical and cytochemical study. In: Muzzarelli RAA (ed) Chitin enzymology, Atec Italy

  • Faoro F, Maffi D, Cantù D, Iriti M (2008) Chemical-induced resistance against powdery mildew in barley: the effects of chitosan and benzothiadiazole. Biocontrol 53:387–301

    CAS  Article  Google Scholar 

  • Feng B, Chen Y, Zhao C, Zhao X, Bai X, Du Y (2006) Isolation of a novel Ser/Thr protein kinase gene from oligochitosan-induced tobacco and its role in resistance against tobacco mosaic virus. Plant Physiol Biochem 44:596–603

    CAS  Article  Google Scholar 

  • Fiil BK, Petersen K, Petersen M, Mundy J (2009) Gene regulation by MAP kinase cascades. Curr Opin Plant Biol 12:615–621

    CAS  Article  Google Scholar 

  • Fraile A, García-Arenal F (2010) The coevolution of plants and viruses: resistance and pathogenicity. Adv Virus Res 76:1–32

    CAS  Article  Google Scholar 

  • García-Mier L, Guevara-González RG, Mondragón-Olguín VM, Del Rocío V-CB, Torres-Pacheco I (2013) Agriculture and bioactives: achieving both crop yield and phytochemicals. Int J Mol Sci 14:4203–4222

    Article  Google Scholar 

  • Głowacki S, Macioszek VK, Kononowicz A (2011) R proteins as fundamentals of plant innate immunity. Cell Mol Biol Lett 16:1–24

    Article  Google Scholar 

  • Guenoune-Gelbart D, Elbaum M, Sagi G, Levy A, Epel BL (2008) Tobacco mosaic virus (TMV) replicase and movement protein function synergistically in facilitating TMV spread by lateral diffusion in the plasmodesmal desmotubule of Nicotiana benthamiana. Mol Plant-Micr Inter 21:335–345

    CAS  Article  Google Scholar 

  • Hadwiger LA, Beckman JM (1980) Chitosan as a component of pea F solani interactions. Plant Physiol 66:2005–2011

    Article  Google Scholar 

  • Hamel L-P, Beaudoin N (2010) Chitooligosaccharide sensing and downstream signalling: contrasted outcomes in pathogenic and beneficial plant-microbe interactions. Planta 232:787–806

    CAS  Article  Google Scholar 

  • Henández-Lauzardo AN, Velázquez-del Valle MG, Guerra-Sánchez MG (2011) Current status of action mode and effect of chitosan against phytopathogens fungi. Afr J Microb Res 5:4243–4247

    Google Scholar 

  • Henry G, Thonart P, Ongena M (2012) PAMPs; MAMPs; DAMPs and others: an update on the diversity of plant immunity elicitors. Biotechnol Agron Soc Environ 16:257–268

    Google Scholar 

  • Hu XY, Steven JN, Fang JY, Cai WM, Tang ZC (2004) Mitogen activated protein kinases mediate the oxidative burst and saponin synthesis induced by chitosan in cell cultures of Panax ginseng. Sci Chin Ser C 47:303–312

    CAS  Article  Google Scholar 

  • Iizasa E, Mitsutom M, Nagano Y (2010) Direct binding of a plant LysM receptor-like kinase LysM RLK1/CERK1 to chitin in vitro. J Biol Chem 285:2996–3004

    CAS  Article  Google Scholar 

  • Iriti M, Faoro F (2003) Constitutive and inducible immunity in plants. Petria 13:77–103

    Google Scholar 

  • Iriti M, Faoro F (2007) Review of innate and specific immunity in plants and animals. Mycopathologia 164:57–64

    Article  Google Scholar 

  • Iriti M, Faoro F (2008) Abscisic is involved in chitosan-induced resistance to tobacco necrosis virus (TNV). Plant Physiol Biochem 46:1106–1111

    CAS  Article  Google Scholar 

  • Iriti M, Faoro F (2009) Chitosan as a MAMP searching for a PRR. Plant Signal Behav 4:66–68

    CAS  Article  Google Scholar 

  • Iriti M, Sironi M, Gomarasca S, Casazza AP, Soave C, Faoro F (2006) Cell death-mediated antiviral effect of chitosan in tobacco. Plant Physiol Biochem 4:893–900

    Article  Google Scholar 

  • Iriti M, Picchi V, Rossoni M, Gomarasca S, Ludwig N, Gargano M, Faoro F (2009) Chitosan antitranspirant activity is due to abscisic acid-dependent stomatal closure. Environ Exp Bot 66:493–500

    CAS  Article  Google Scholar 

  • Iriti M, Castorina G, Vitalini S, Mignani I, Soave C, Fico G, Faoro F (2010) Chitosan-induced ethylene-independent resistance does not reduce crop yield in bean plants. Biol Control 54:241–247

    CAS  Article  Google Scholar 

  • Iriti M, Vitalini S, Di Tommaso G, D’Amico S, Borgo M, Faoro F (2011) A new chitosan formulation induces grapevine resistance against powdery mildew and improves grape quality traits. Aust J Grape Wine Res 17:263–269

    CAS  Article  Google Scholar 

  • Kaku H, Nishizawa Y, Ishii-Minami N, Akimoto-Tomiyama C, Dohmae N, Takio K, Minami E, Shibuya N (2006) Plant cells recognize chitin fragments for defence signalling through a plasma membrane receptors. PNAS 103:11086–11091

    CAS  Article  Google Scholar 

  • Kauss H, Jeblick W, Domard A (1989) The degree of polymerization and N-acetylation of chitosan determine its ability to elicit callose formation in suspension-cultured cells and protoplasts of Catharanthus roseus. Planta 178:385–392

    CAS  Article  Google Scholar 

  • Khan MR, Doohan FM (2009) Comparison of the efficacy of chitosan with that of a fluorescent pseudomonad for the control of Fusarium head blight disease of cereals and associated mycotoxin contamination of grain. Biol Control 48:48–54

    CAS  Article  Google Scholar 

  • Köhle H, Jeblick W, Poten F, Blaschek W, Kauss H (1985) Chitosan-elicited callose synthesis in soybean cells as a Ca++ -dependent process. Plant Physiol 77:544–551

    Article  Google Scholar 

  • Kong M, Chen XG, Xing K, Park HJ (2010) Antimicrobial properties of chitosan and mode of action: a state of art review. Int J Food Microb 144:51–63

    CAS  Article  Google Scholar 

  • Kulikov SN, Chirkov SN, Il’ina AV, Lopatin SA, Varlamov VP (2006) Effect of molecular weight of chitosan on its antiviral activity in plants. Appl Biochem Microb 42:200–203

    CAS  Article  Google Scholar 

  • Kumar D, Klessig DF (2008) The search for the salicylic acid receptor led to discovery of the SAR signal receptor. Plant Signal Behav 3:691–692

    Article  Google Scholar 

  • Levy A, Guenoune-Gelbart D, Epel BL (2007) β-13-Glucanases Plasmodesmal gate keepers for intercellular communication. Plant Signal Behav 2:288–290

    Article  Google Scholar 

  • Li Y, Yin H, Qing W, Zhao X, Du Y, Li F (2009) Oligochitosan induced Brassica napus L production of NO and H2O2 and their physiological function. Carbohydr Polym 75:612–617

    CAS  Article  Google Scholar 

  • Lin W, Hu X, Zhang W, Rogers WJ, Cai W (2005) Hydrogen peroxide mediates defence responses induced by chitosans of different molecular weights in rice. J Plant Physiol 162:937–944

    CAS  Article  Google Scholar 

  • Lizama-Uc G, Estrada-Mota IA, Caamal-Chan MG, Souza-Perera R, Oropeza-Salìn C, Islas-Flores I, Zuñiga-Aguillar JJ (2007) Chitosan activates a MAP-kinase pathway and modifies abundance of defence-related transcripts in calli of Cocus nucifera. L Physiol Mol Plant Pathol 70:130–141

    CAS  Article  Google Scholar 

  • Malerba M, Crosti P, Cerana R (2012) Defense/stress responses activated by chitosan in sycamore cultured cells. Protoplasma 249:89–98

    CAS  Article  Google Scholar 

  • Mandal S, Mitra A (2007) Reinforcement of cell wall in roots of Lycopersicon esculentum through induction of phenolic compounds and lignin by elicitors. Physiol Mol Plant Pathol 71:201–209

    CAS  Article  Google Scholar 

  • Manjunatha G, Roopa KS, Prashanth GN, Shetty HS (2008) Chitosan enhances disease resistance in pearl millet against downy mildew caused by Sclerospora graminicola and defence-related enzyme activation. Pest Manag Sci 64:1250–1257

    CAS  Article  Google Scholar 

  • Mejía-Teniente L, Torres-Pacheco I, González-Chavira MM, Ocampo-Velazquez RV, Herrera-Ruiz G, Chapa-Oliver AM, Guevara-González RG (2010) Use of elicitors as an approach for sustainable agriculture. Afr J Biotech 9:9155–9162

    Google Scholar 

  • Miya A, Albert P, Shinya T, Desaki Y, Ichimura K, Shirasu K, Narusaka Y, Kawakami N, Kaku H, Shibuya N (2007) CERK1a LysM receptor kinase is essential for chitin elicitor signaling in Arabidopsis. PNAS 104:19613–19618

    CAS  Article  Google Scholar 

  • Obara N, Hasegawa M, Kodama O (2002) Induced volatiles in elicitor-treatedand rice blast fungus-inoculated rice leaves. Biosci Biotech Biochem 66:2549–2559

    CAS  Article  Google Scholar 

  • Ogawa D, Nakajima N, Seo S, Mitsuhara I, Kamada H, Ohashi Y (2006) The phenylalanine pathway is the main route of salicylic acid biosynthesis in Tobacco mosaic virus-infected tobacco leaves. Plant Biotech 23:395–398

    CAS  Article  Google Scholar 

  • Okada M, Matsumura M, Ito Y, Shibuya N (2002) High-affinity binding proteins for N-acetyl-chitooligosaccharide elicitor in the plasma membranes from wheat barley and carrot cells: Conserved presence and correlation with the responsiveness to the elicitor. Plant Cell Physiol 43:505–512

    CAS  Article  Google Scholar 

  • Park CJ, Kim KJ, Shin R, Park JM, Shin YC, Paek KH (2004) Pathogenesis-related protein 10 isolated from hot pepper functions as a ribonuclease in an antiviral pathway. Plant J 37:186–198

    CAS  Article  Google Scholar 

  • Petutschnig EK, Jones AM, Serazetdinova L, Lipka U, Lipka V (2010) The lysin motif receptor-like kinase (LysM-RLK) CERK1 is a major chitin-binding protein in Arabidopsis thaliana and subject to chitin-induced phosphorylation. J Biol Chem 285:28902–28911

    CAS  Article  Google Scholar 

  • Pochanavanich P, Suntornsuk W (2002) Fungal chitosan production and its characterization. Lett Appl Microb 35:17–21

    CAS  Article  Google Scholar 

  • Pospieszny H (1995) Inhibition of tobacco mosaic virus (TMV) infection by chitosan. Phytopathol Pol 22:69–74

    Google Scholar 

  • Pospieszny H (1997) Antiviroid activity of chitosan. Crop Prot 16:105–106

    CAS  Article  Google Scholar 

  • Pospieszny H, Atabekov JG (1989) Effect of chitosan on the hypersensitive response reaction of bean to Alfalfa Mosaic. Virus Plant Sci 62:29–31

    CAS  Article  Google Scholar 

  • Pospieszny H, Chirkov SN, Atabekov JG (1991) Induction of antiviral resistance in plants by chitosan. Plant Sci 79:63–68

    CAS  Article  Google Scholar 

  • Pospieszny H, Struszczyk H, Chirkov SN, Atabekov JG (1995) New application of chitosan in agriculture In: Karnicki ZS (ed) Chitin world. Gdynya Wirschaftsverlag NW

  • Pospieszny H, Struszczyk H, Cajca M (1996) Biological activity of Aspergillus-degraded chitosan. Chitin Enzymol 2:385–389

    Google Scholar 

  • Rakwal R, Tamogami S, Agrawal GK, Iwahashi H (2002) Octadecanoid signalling component “burst” in rice (Oryza sativa L) seedling leaves upon wounding by cut and treatment with fungal elicitor chitosan. Biochem Biophys Res Commun 295:1041–1045

    CAS  Article  Google Scholar 

  • Rhoades J, Roller S (2000) Antimicrobial actions of degraded and native chitosan against spoilage organisms in laboratory media food. Appl Environ Microb 66:80–86

    CAS  Article  Google Scholar 

  • Sanabria NM, Huang JC, Dubery IA (2010) Self/nonself perception in plants in innate immunity and defence. Self/Nonself 1:40–54

    Article  Google Scholar 

  • Shibuya N, Ebisu N, Kamada Y, Kaku H, Cohn J, Ito Y (1996) Localization and binding characteristics of a high-affinity binding site for N-acetylchitooligosaccharide elicitor in the plasma membrane from suspension-cultured rice cells suggest a role as a receptor for the elicitor signal at the cell surface. Plant Cell Physiol 37:894–908

    CAS  Article  Google Scholar 

  • Silipo A, Erbs G, Shinya T, Dow JM, Parrilli M, Lanzetta R, Shibuya N, Newman M-A, Molinaro A (2010) Glyco-conjugates as elicitors or suppressors of plant innate immunity. Glycobiology 20:406–419

    CAS  Article  Google Scholar 

  • Srivastava N, Gonugunta VK, Puli MR, Raghavendra AS (2009) Nitric oxide production occurs downstream of reactive oxygen species in guard cells during stomatal closure induced by chitosan in abaxial epidermis of Pisum sativum. Planta 229:757–765

    CAS  Article  Google Scholar 

  • Stange C (2006) Plant-virus interactions during the infective process. Cien Investig Agr 33:1–18

    Google Scholar 

  • Struszczyk MH, Pospieszny H, Schanzenbach D, Peter MG (1998) Biodegradation of chitosan In: Struszchyk H (ed) Progress on chemistry and application of chitin and its derivatives. Polish Chitin Society Lodz Poland.

  • Surguchova NA, Varitsev YA, Chirkov SN (2000) The inhibition of systemic viral infections in potato and tomato plants by chitosan treatment. J Russ Phytopathol Soc 1:59–62

    Google Scholar 

  • Uthairatanakij A, Teixeira da Silva JA, Obsuwan K (2007) Chitosan for improving orchid production and quality. Orchid Sci Biotech 1:1–5

    Google Scholar 

  • Vasil’ev LA, Dzyubinskaya EV, Zinovkin RA, Kiselevsky DB, Lobysheva NV, Samuilov VD (2009) Chitosan-induced programmed cell death in plants. Biochem-Moscow 74:1035–1043

    Article  Google Scholar 

  • Vitalini S, Gardana C, Zanzotto A, Fico G, Faoro F, Simonetti P, Iriti M (2011) From vineyard to glass: agrochemicals enhance the melatonin content total polyphenols and antiradical activity of red wines. J Pineal Res 51:278–285

    CAS  Article  Google Scholar 

  • Walker-Simmons M, Jin D, West CA, Hadwiger L, Ryan CA (1984) Comparison of proteinase inhibitor-inducing activities and phytoalexin elicitor activities of a pure fungal endopolyga-lacturonase pectic fragments and chitosans. Plant Physiol 76:833–836

    CAS  Article  Google Scholar 

  • Wan J, Zhang XC, Neece D, Ramonell KM, Clough S, Kim SY, Stacey MG, Stacey G (2008) A LysM receptor-like kinase plays a critical role in chitin signalling and fungal resistance in Arabidopsis. Plant Cell 20:471–481

    CAS  Article  Google Scholar 

  • Wang W, Li S, Zhao X, Du Y, Lin B (2008) Oligochitosan induces cell death and hydrogen peroxide accumulation in tobacco suspension cells. Pestic Biochem Physiol 90:106–113

    CAS  Article  Google Scholar 

  • Yafei C, Yong Z, Xiaoming Z, Peng G, Hailong A, Yuguang D, Yingrong H, Hui L, Yuhong Z (2009) Functions of oligochitosan induced protein kinase in tobacco mosaic virus resistance and pathogenesis related proteins in tobacco. Plant Physiol Biochem 47:724–731

    Article  Google Scholar 

  • Yin H, Zhao X, Du Y (2010a) Oligochitosan: a plant disease vaccine—a review. Carbohydr Polym 82:1–8

    CAS  Article  Google Scholar 

  • Yin H, Bai XF, Zhao XM, Du YG (2010b) Molecular cloning and characterization of a Brassica napus L MAP kinase involved in oligochitosan-induced defence signalling. Plant Mol Biol Rep 28:292–301

    CAS  Article  Google Scholar 

  • Ylitalo R, Lehtinen S, Wuolijoki E, Ylitalo P, Lehtimäki T (2002) Cholesterol-lowering properties and safety of chitosan. Arzneimittelforschung 52:1–7

    CAS  Google Scholar 

  • Zaninotto F, La Camera S, Polverari A, Delledonne M (2006) Cross talk between reactive nitrogen and oxygen species during the hypersensitive disease resistance response. Plant Physiol 141:379–383

    CAS  Article  Google Scholar 

  • Zhang H, Wang W, Yin H, Zhao X, Du Y (2012) Oligochitosan induces programmed cell death in tobacco suspension cells. Carbohydr Polym 87:2270–2278

    CAS  Article  Google Scholar 

  • Zhao XM, She XP, Yu W, Liang XM, Du YG (2007) Effects of oligochitosans on tobacco cells and role of endogenous nitric oxide burst in the resistance of tobacco to TMV. J Plant Pathol 89:55–65

    CAS  Google Scholar 

  • Zuppini A, Baldan B, Millioni R, Favaron F, Navazio L, Mariani P (2003) Chitosan induces Ca2+ mediated programmed cell death in soybean cells. New Phytol 161:557–568

    Article  Google Scholar 

Download references

Acknowledgments

We apologize to the colleagues whose excellent studies have not been cited for brevity. MI is grateful to Dr. Andrea Kuthanova and Prof. Zdenek Opatrny (Department of Plant Physiology, Charles University in Prague, Czech Republic).

Conflict of interest

The authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcello Iriti.

Additional information

Responsible editor: Philippe Garrigues

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Iriti, M., Varoni, E.M. Chitosan-induced antiviral activity and innate immunity in plants. Environ Sci Pollut Res 22, 2935–2944 (2015). https://doi.org/10.1007/s11356-014-3571-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-014-3571-7

Keywords

  • Plant activators
  • Plant innate immunity
  • PAMPs/MAMPs
  • PRRs
  • Viral diseases
  • Plant viruses
  • Crop protection
  • Environmental safety