Environmental Science and Pollution Research

, Volume 22, Issue 4, pp 2634–2642 | Cite as

Distribution of tributyltin in surface sediments from transitional marine-lagoon system of the south-eastern Baltic Sea, Lithuania

  • Sergej Suzdalev
  • Saulius Gulbinskas
  • Nerijus Blažauskas
Research Article


The current research paper presents the results of contamination by tributyltin (TBT) compounds in Klaipėda Port, which is situated in a unique marine-lagoon water interaction zone. One hundred fifty-four surface sediment samples have been taken along the whole transition path from lagoon to the sea and analysed in order to quantify the contamination rate in specific environment of high anthropogenic pressure. The detected TBT concentrations ranged from 1 to 5,200 ng Sn g−1 of dry weight of sediment. The back-trace of horizontal distribution of TBT-contaminated sediments show obvious increase of tributyltin concentrations closer to port areas dealing with ship repair and places of dry-docking facilities. This is a clear indication that those activities are the main source of contamination in the study area. The estimated correlation of TBT concentration in sediments with total organic carbon and the amount of fine fraction (<0.063 mm) was significant for most of the stations. The TBT concentration in those sites varies from 1 to 100 ng Sn g−1. This fact indicates that the most intensive accumulation of tributyltin is related to potential contamination source areas (ship repairing, dockyards) due to direct input of hazardous substances into the water.


Tributyltin compounds Marine-lagoon environment South-eastern Baltic Contamination Port 



The investigations were carried out in frame of international project SMOCS – “Sustainable management of contaminated sediments in the Baltic sea”, part-financed by the European Union (Baltic Sea Region Programme 2007–2013).


  1. Barakat AO, Kim M, Qian Y, Wade TL (2001) Butyltin compounds in sediments from the commercial harbor of Alexandria City, Egypt. Environ Toxicol Chem 20:2744–2748CrossRefGoogle Scholar
  2. Batley G (1996) The distribution and fate of tributyltin in the marine environment. In: de Mora SJ (ed) Tributyltin: case study of an environmental contaminant. Cambridge University Press, UK, pp 139–166CrossRefGoogle Scholar
  3. Berg M, Arnold CG, Müller SR, Mühlemann J, Schwarzenbach RP (2001) Sorption and desorption behavior of organotin compounds in sediment-pore water systems. Environ Sci Technol 35(15):3151–3157CrossRefGoogle Scholar
  4. Berto D, Giani M, Boscolo R, Covelli S, Giovanardi O, Massironi M, Grassia L (2007) Organotins (TBT and DBT) in water, sediments, and gastropods of the southern Venice Lagoon (Italy). Mar Pollut Bull 55(10–12):425–435CrossRefGoogle Scholar
  5. Bhosle NB, Garg A, Harji R, Jadhav S, Sawant SS, Krishnamurthy V, Anil C (2006) Butyltins in the sediments of Kochi and Mumbai Harbours, west coast of India. Environ Int 32(2):252–258CrossRefGoogle Scholar
  6. Biselli S, Bester K, Hühnerfuss H, Fent K (2000) Concentrations of the antifouling compound Irgarol 1051 and of organotins in water and sediments of German North and Baltic Sea marinas. Mar Pollut Bull 40(3):233–243CrossRefGoogle Scholar
  7. Burton ED, Phillips IR, Hawker DW (2004) Sorption and desorption behavior of tributyltin with natural sediments. Environ Sci Technol 38(24):6694–6700CrossRefGoogle Scholar
  8. Cassi R, Tolosa I, de Mora S (2008) A survey of antifoulants in sediments from ports and marinas along the French Mediterranean coast. Mar Pollut Bull 56(11):1943–1948CrossRefGoogle Scholar
  9. Ceulemans M, Slaets S, Adams F (1998) Speciation of organotin in environmental sediment samples. Talanta 46(1998):395–405CrossRefGoogle Scholar
  10. Chagot D, Alzieu C, Sanjuan J, Grizel H (1990) Sublethal and histopathological effects of trace levels of tributyltin fluoride on adult oysters Crassostrea gigas. Aquat Living Resour 3:121–130CrossRefGoogle Scholar
  11. Díez S, Jover E, Albaigés J, Bayona JM (2006) Occurrence and degradation of butyltins and wastewater marker compounds in sediments from Barcelona Harbor, Spain. Environ Int 32(7):858–865CrossRefGoogle Scholar
  12. Dudutytė Z, Manusadžianas L, Ščeponavičiūtė R (2007) Report on dangerous substances in the aquatic environment of Lithuania. 53 p.Google Scholar
  13. Eklund B, Elfström M, Gallego I, Bengtsson BE, Breitholtz M (2010) Biological and chemical characterization of harbour sediments from the Stockholm area. J Soils Sediment 10(1):127–141CrossRefGoogle Scholar
  14. El-Sayed MK, El-Wakeel SK, Rifaat AE (1988) Factor analysis of sediments in the Alexandria western harbor, Egypt. Acta Oceanol 11:1–11Google Scholar
  15. Emelyanov E (1998) The barrier zones in the ocean. Sedimentation, ore formation, geoecology. Yantarny Skaz, KaliningradGoogle Scholar
  16. Falandysz J, Brzostowski A, Szpunar J, Rodriguez-Pereiro I (2002) Butyltins in sediments and threespined stickleback (Gasterosteus aculleatus) from the marinas of the Gulf of Gdansk, Baltic Sea. J Environ Sci Health, Part A 37(3):353–363CrossRefGoogle Scholar
  17. Falandysz J, Albanis T, Bachmann J, Bettinetti R, Bochentin I, Boti V, Bristeau S, Daehne B, Dagnac T, Galassi S, Jeannot R, Oehlmann J, Orlikowska A, Sakkas V, Szczerski R, Valsamaki V, Schulte-Oehlmann U (2006) Some chemical contaminant of surface sediments at the Baltic Sea coastal region with special emphasis on androgenic and anti-androgenic compounds. J Environ Sci Health, Part A: Toxic/Hazard Subst Environ Eng 41(10):2127–2162CrossRefGoogle Scholar
  18. Fent K (1996) Ecotoxicology of organotin compounds. Crit Rev Toxicol 26(1):3–117CrossRefGoogle Scholar
  19. Fent K, Hunn J (1991) Phenyltins in water, sediment, and biota of freshwater marinas. Environ Sci Technol 25:956–963CrossRefGoogle Scholar
  20. Filipkowska F, Kowalewska G, Pavoni B, Łęczyński L (2011) Organotin compounds in surface sediments from seaports on the Gulf of Gdańsk (southern Baltic coast). Environ Monit Assess 182:455–466CrossRefGoogle Scholar
  21. Galkus A, Jokšas K (1997) Sedimentary material in the transitional aquasystem. Institute of Geography, Vilnius (In Lithuanian)Google Scholar
  22. Garg A, Meena RM, Bhosle NB (2010) Distribution of butyltins in waters and sediments of the Mandovi and Zuari estuaries, west coast of India. Environ Monit Assess 165:643–651CrossRefGoogle Scholar
  23. Garg A, Meena RM, Jadhav S, Bhosle NB (2011) Distribution of butyltins in the waters and sediments along the coast of India. Mar Pollut Bull 62:423–431CrossRefGoogle Scholar
  24. Gulbinskas S, Trimonis E (1999) Distribution and composition of bottom sediments on the underwater slope at the Lithuanian coast of the Baltic Sea. Baltica 12:32–37Google Scholar
  25. Harino H, Yamamoto Y, Eguchi S, Kawai S, Kurokawa Y, Arai T, Ohji M, Okamura H, Miyazaki N (2007) Concentrations of antifouling biocides in sediment and mussel samples collected from Otsuchi Bay, Japan. Arch Environ Contam Toxicol 52(2):179–188CrossRefGoogle Scholar
  26. Hoch M (2001) Organotin compounds in the environment—an overview. Appl Geochem 16:719–743CrossRefGoogle Scholar
  27. Hoch M, Schwesig D (2004) Parameters controlling the partitioning of tributyltin (TBT) in aquatic systems. Appl Geochem 19(3):323–334CrossRefGoogle Scholar
  28. Hoch M, Alonso-Azcarate J, Lischick M (2002) Adsorption behaviour of toxic tributyltin to clay-rich sediments under various environmental conditions. J Environ Toxicol Chem 21(7):1390–1397CrossRefGoogle Scholar
  29. IMO (2001) International convention on the control of harmful anti-fouling systems on ships. International Maritime Organization. Accessed 4 Aug 2014
  30. Kim NS, Shim WJ, Yim UH, Ha SY, An JG (2011) Shin KH (2011) Three decades of TBT contamination in sediments around a large scale shipyard. J Hazard Mater 192:634–642CrossRefGoogle Scholar
  31. LAND 46A-2002 (2002) Regulation on sediment dredging in marine and port areas and dredged spoil managementGoogle Scholar
  32. Langston WJ, Pope ND (1995) Determinants of TBT adsorption and desorption in estuarine sediments. Mar Pollut Bull 31(1–3):32–43CrossRefGoogle Scholar
  33. Pempkowiak J (1997) General marine geochemistry. Gdańsk, pp 148-150 (In Polish)Google Scholar
  34. Radke B, Łęczyński L, Wasik A, Namieśnik J, Bolałek J (2008) The content of butyl- and phenyltin derivatives in the sediment from the Port of Gdansk. Chemosphere 73:407–414CrossRefGoogle Scholar
  35. Rodriguez GJ, Solaun O, Larreta J, Belzunce Segarra MJ, Franco J, Ignacio García Alonso J, Sariego C, Valencia V, Borja A (2010) Baseline of butyltin pollution in coastal sediments within the Basque Country (northern Spain), in 2007–2008. Mar Pollut Bull 60(1):139–145CrossRefGoogle Scholar
  36. Senthilkumar K, Duda CA, Villeneuve DL, Kannan K, Falandysz J, Giesy JP (1999) Butyltin compounds in sediment and fish from the Polish coast of the Baltic Sea. Environ Sci Pollut Res 6(4):200–206CrossRefGoogle Scholar
  37. Shim WJ, Oh JR, Kahng SH, Shim JH, Lee SH (1999) Horizontal distribution of butyltins in surface sediments from an enclosed bay system, Korea. Environ Pollut 106:351–357CrossRefGoogle Scholar
  38. Stakėnienė R, Galkus A, Jokšas K (2011) Pollution of Klaipėda port waters. Polish J Environ Stud 20(2):445–459Google Scholar
  39. Stronkhorst J, Ariese F, Van Hattum B, Postma JF, De Kluijver M, Den Besten PJ, Bergman MJN, Daan R, Murk AJ, Vethaak AD (2003) Environmental impact and recovery at two dumping sites for dredged material in the North Sea. Environ Pollut 124(1):17–31CrossRefGoogle Scholar
  40. Trimonis E, Gulbinskas S (2000) Bottom sediments of the Klaipėda Strait. Geologija 30:20–27 (In Lithuanian)Google Scholar
  41. Trimonis E, Vaikutienė G, Gulbinskas S (2010) Seasonal and spatial variations of sedimentary matter and diatom transport in the Klaipėda Strait (Eastern Baltic). Baltica 23(2):127–134Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Sergej Suzdalev
    • 1
  • Saulius Gulbinskas
    • 1
  • Nerijus Blažauskas
    • 1
  1. 1.Marine Science and Technology CentreKlaipėda UniversityKlaipėdaLithuania

Personalised recommendations