Uptake and translocation of metals and nutrients in tomato grown in soil polluted with metal oxide (CeO2, Fe3O4, SnO2, TiO2) or metallic (Ag, Co, Ni) engineered nanoparticles

Abstract

The influence of exposure to engineered nanoparticles (NPs) was studied in tomato plants, grown in a soil and peat mixture and irrigated with metal oxides (CeO2, Fe3O4, SnO2, TiO2) and metallic (Ag, Co, Ni) NPs. The morphological parameters of the tomato organs, the amount of component metals taken up by the tomato plants from NPs added to the soil and the nutrient content in different tomato organs were also investigated. The fate, transport and possible toxicity of different NPs and nutrients in tomato tissues from soils were determined by inductively coupled plasma-optical emission spectrometry (ICP-OES). The tomato yield depended on the NPs: Fe3O4-NPs promoted the root growth, while SnO2-NP exposure reduced it (i.e. +152.6 and −63.1 % of dry matter, respectively). The NP component metal mainly accumulated in the tomato roots; however, plants treated with Ag-, Co- and Ni-NPs showed higher concentration of these elements in both above-ground and below-ground organs with respect to the untreated plants, in addition Ag-NPs also contaminated the fruits. Moreover, an imbalance of K translocation was detected in some plants exposed to Ag-, Co- and Fe3O4-NPs. The component metal concentration of soil rhizosphere polluted with NPs significantly increased compared to controls, and NPs were detected in the tissues of the tomato roots using electron microscopy (ESEM-EDS).

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. American Society for Testing and Materials (2006) Standard terminology relating to nanotechnology. E 2456–06. West Conshohocken, PA

  2. Anjum N, Gill S, Duarte A, Pereira E, Ahmad I (2013) Silver nanoparticles in soil-plant systems. J Nanoparticle Res 15(1896):1–26. doi:10.1007/s11051-013-1896-7

    Google Scholar 

  3. Ball AS, Shah D, Wheatley CF (2000) Assessment of the potential of a newspaper/horse manure-based compost. Bioresour Technol 73:163–167. doi:10.1016/S0960-8524(99)00169-8

    CAS  Article  Google Scholar 

  4. Ben-Moshe T, Dror I, Berkowitz B (2010) Transport of metal oxide nanoparticles in saturated porous media. Chemosphere 81:387–393. doi:10.1016/j.chemosphere.2010.07.007

    CAS  Article  Google Scholar 

  5. Birbaum K, Brogioli R, Schellenberg M, Martinoia E, Stark WJ, Günther D, Limbach LK (2010) No evidence for cerium dioxide nanoparticle translocation in maize plants. Environ Sci Technol 44:8718–8723. doi:10.1021/es101685f

    CAS  Article  Google Scholar 

  6. British Standards Institution (2007) Terminology for nanomaterials. PAS 136: 2007. London, UK

  7. Carvajal M, Cerda A, Martnez V (2000) Does calcium ameliorate the negative effect of NaCl on melon root water transport by regulating aquaporing activity? New Phytol 145:439–441

    CAS  Article  Google Scholar 

  8. Carvalho Bertoli CA, Cannata MG, Carvalho R, Ribeiro Bastos AR, Freitas MP, dos Santos A (2012) Lycopersicon esculentum submitted to Cd-stressful conditions in nutrition solution: nutrient contents and translocation. Ecotoxicol Environ Saf 86:176–181. doi:10.1016/j.ecoenv.2012.09.011

    CAS  Article  Google Scholar 

  9. Dimkpa CO, McLean JE, Britt DW, Anderson AJ (2012) Bioactivity and biomodification of Ag, ZnO, and CuO nanoparticles with relevance to plant performance in agriculture (Review). Ind Biotechnol 8:344–357

    CAS  Article  Google Scholar 

  10. Dimkpa CO, McLean JE, Martineau N, Britt DW, Haverkamp R, Anderson AJ (2013) Silver nanoparticles disrupt wheat (Triticum aestivum L.) growth in a sand matrix. Environ Sci Technol 47:1082–1090. doi:10.1021/es302973y

    CAS  Article  Google Scholar 

  11. Dinesh R, Anandaraj M, Srinivasan V, Hamza S (2012) Engineered nanoparticles in the soil and their potential implications to microbial activity. Geoderma 173–174:19–27. doi:10.1016/j.geoderma.2011.12.018

    Article  Google Scholar 

  12. Dong J, Wu F, Zhang G (2006) Influence of cadmium on antioxidant capacity and four microelement concentrations in tomato seedlings (Lycopersicon esculentum). Chemosphere 64:1659–1666. doi:10.1016/j.chemosphere.2006.01.030

    CAS  Article  Google Scholar 

  13. Du W, Sun Y, Ji R, Zhu J, Wu J, Guo H (2011) TiO2 and ZnO nanoparticles negatively affect wheat growth and soil enzyme activities in agricultural soil. J Environ Monit 13:822–828. doi:10.1039/C0EM00611D

    CAS  Article  Google Scholar 

  14. El-Temsah YS, Joner EJ (2010) Impact of Fe and Ag nanoparticles on seed germination and differences in bioavailability during exposure in aqueous suspension and soil. Environ Toxicol 27:42–49. doi:10.1002/tox.20610

    Article  Google Scholar 

  15. Farré M, Sanchís J, Barceló D (2011) Analysis and assessment of the occurrence, the fate and the behavior of nanomaterials in the environment. TrAC Trends Anal Chem 30:517–527. doi:10.1186/2190-4715-24-5

    Article  Google Scholar 

  16. Fernandes JC, Henriques FS (1991) Biochemical, physiological, and structural effects of excess copper in plants. Bot Rev 57:246–273. doi:10.1007/BF02858564

    Article  Google Scholar 

  17. Gardea-Torresdey JL, Rico CM, White JC (2014) Trophic transfer, transformation, and impact of engineered nanomaterials in terrestrial environments. Environ Sci Technol 48:2526–2540. doi:10.1021/es4050665

    CAS  Article  Google Scholar 

  18. Geisler-Lee J, Wang Q, Yao Y, Zhang W, Geisler M, Li K, Huang Y, Chen Y, Kolmakov A, Ma X (2013) Phytotoxicity, accumulation and transport of silver nanoparticles by Arabidopsis thaliana. Nanotoxicology 3:323–337. doi:10.3109/17435390.2012.658094

    Article  Google Scholar 

  19. Gottschalk F, Sonderer T, Scholz RW, Nowack B (2009) Modeled environmental concentrations of engineered nanomaterials (TiO2, ZnO, Ag, CNT, Fullerenes) for different regions. Environ Sci Technol 43:9216–9222. doi:10.1021/es9015553

    CAS  Article  Google Scholar 

  20. Hernandez-Viezcas JA, Castillo-Michel H, Andrews JC, Cotte M, Rico C, Peralta-Videa JR, Ge Y, Priester JH, Holden PA, Gardea-Torresdey JL (2013) In situ synchrotron x-ray fluorescence mapping and speciation of CeO2 and ZnO nanoparticles in soil cultivated soybean (Glycine max). ACS Nano 7:1415–1423

    CAS  Article  Google Scholar 

  21. Kim YH, Kim CY, Song WK, Park DS, Kwon SY, Lee HS, Bang HW, Kwak SS (2008) Over expression of sweet potato swpa4 peroxidase results in increased hydrogen peroxide production and enhances stress tolerance in tobacco. Planta 227:867–881. doi:10.1007/s00425-007-0663-3

    CAS  Article  Google Scholar 

  22. Kumari M, Mukherjee A (2009) Genotoxicity of silver nanoparticle in Allium cepa. Sci Total Environ 407:5243–5246. doi:10.1016/j.scitotenv.2009.06.024

    CAS  Article  Google Scholar 

  23. Larbi A, Morales F, Abadía A, Gogorcena Y, Lucena JJ, Abadía J (2002) Effects of Cd and Pb in sugar beet plants grown in nutrient solution: induced Fe deficiency and growth inhibition. Funct Plant Biol 29:1453–64

    CAS  Article  Google Scholar 

  24. Lee WM, An YJ, Yoon H, Kweon HS (2008) Toxicity and bioavailability of copper nanoparticles to the terrestrial plants mung bean (Phaseolus radiatus) and wheat (Triticum aestivum): plant agar test for water-insoluble nanoparticles. Environ Toxicol Chem 27:1915–1921. doi:10.1897/07-481.1

    CAS  Article  Google Scholar 

  25. Lee CW, Mahendra S, Zodrow K, Li D, Tsai YC, Braam J, Alvarez PJJ (2010) Developmental phytotoxicity of metal oxide nanoparticles to Arabidopsis thaliana. Environ Toxicol Chem 29:669–675. doi:10.1002/etc.58

    CAS  Article  Google Scholar 

  26. Lee WM, Kwak JI, An YJ (2012) Effect of silver nanoparticles in crop plants Phaseolus radiatus and Sorghum bicolor: media effect on phytotoxicity. Chemosphere 86:491–499. doi:10.1016/j.chemosphere2011.10.013

    CAS  Article  Google Scholar 

  27. Levent Tuna A, Kaya C, Ashraf M, Altunlu H, Yokas I, Yagmur B (2007) The effects of calcium sulphate on growth, membrane stability and nutrient uptake of tomato plants grown under salt stress. Environ Exp Bot 59:173–178

    Article  Google Scholar 

  28. Lin D, Xing B (2007) Phytotoxicity of nanoparticles: inhibition of seed germination and root growth. Environ Pollut 150:243–250. doi:10.1016/j.envpol.2007.01.016

    CAS  Article  Google Scholar 

  29. Lopez-Moreno ML, De La Rosa G, Hernandez-Viezcas JA, Peralta-Videa JR, Gardea-Torresdey JL (2010) X-ray adsorption spectroscopy (XAS) corroboration of the uptake and storage of CeO2 nanoparticles and assessment of their differential toxicity in four edible plant species. J Agric Food Chem 58:3689–3693. doi:10.1021/jf904472e

    CAS  Article  Google Scholar 

  30. Mandeh M, Omidi M, Rahaie M (2012) In vitro influences of TiO2 nanoparticles on barley (Hordeum vulgare L.) tissue culture. Biol Trace Elem Res 150:376–80. doi:10.1007/s12011-012-9480-z

    Article  Google Scholar 

  31. Ouzounidou G, Asfi M, Sotirakis N, Papadopoulou P, Gaitis F (2008) Olive mill wastewater triggered changes in physiology and nutritional quality of tomato (Lycopersicon esculentum Mill.) depending on growth substrate. J Hazard Mater 158:523–530. doi:10.1016/j.tcb.2009.07.004

    CAS  Article  Google Scholar 

  32. Paiva HN, Carvalho JG, Siqueira JO (2002) Índice de translocação de nutrientes em mudas de cedro (Cedrela fissilis Vell.) e de ipê-roxo (Tabebuia impetiginosa Mart. Standl.) submetidas a doses crescentes de cádmio, níquel e chumbo. Rev Tree 26:467–473

    Google Scholar 

  33. Pidgeon N, Harthorn BH, Bryant K, Rogers-Hayden T (2009) Deliberating the risks of nanotechnologies for energy and health applications in the United States and United Kingdom. Nat Nanotechnol 4:95–98. doi:10.1038/nnano.2008

    CAS  Article  Google Scholar 

  34. Priester JH, Ge Y, Mielke RE, Horst AM, Cole Moritz S, Espinosa K, Gelb J, Walkerg SL, Nisbet RM, Ani YJ, Schimel JP, Palmer RG, Hernandez-Viezcas JA, Zhao L, Gardea-Torresdey JL, Holden PA (2012) Soybean susceptibility to manufactured nanomaterials with evidence for food quality and soil fertility interruption. PNAS Plus. doi:10.1073/pnas.1205431109

    Google Scholar 

  35. Remédios C, Rosário F, Bastos V (2012) Environmental nanoparticles interaction with plants: morphological, physiological and genotoxic aspects. J Bot 751686:8. doi:10.1155/2012/751686

    Google Scholar 

  36. Rico CM, Majumdar S, Duarte-Gardea M, Peralta-Videa JR, Gardea-Torresdey JL (2011) Interaction of nanoparticles with edible plants and their possible implications in the food chain. J Agric Food Chem 59:485–3498. doi:10.1021/jf104517j

    Article  Google Scholar 

  37. Rico CM, Morales MI, McCreary R, Castillo-Michel H, Barrios AC, Hong J, Tafoya A, Lee W-Y, Varela-Ramirez A, Peralta-Videa JR, Gardea-Torresdey JL (2013a) Cerium oxide nanoparticles modify the antioxidative stress enzyme activities and macromolecule composition in rice seedlings. Environ Sci Technol 47:14110–14118. doi:10.1021/es4033887

    CAS  Article  Google Scholar 

  38. Rico CM, Morales MI, Barrios AC, McCreary R, Hong J, Lee W-Y, Nunez J, Peralta-Videa JR, Gardea-Torresdey JL (2013b) Effect of cerium oxide nanoparticles on the quality of rice (Oryza sativa L.) grains. J Agric Food Chem 61:11278–11285. doi:10.1021/jf404046v

    CAS  Article  Google Scholar 

  39. Ruffini Castiglione M, Giorgetti L, Geri C, Cremonini N (2011) The effects of nano-TiO2 on seed germination development and mitosis of root tip cells of Vicia narborensis L., and Zea mays L. J Nanoparticle Res 13:2443–2449. doi:10.1007/s11051-010-0135-8

    CAS  Article  Google Scholar 

  40. Schwabe F, Schulin R, Limbach LK, Stark W, Bürge D (2013) Influence of two types of organic matter on interaction of CeO2 nanoparticles with plants in hydroponic culture. Chemosphere 91:512–520. doi:10.1016/j.chemosphere.2012

    CAS  Article  Google Scholar 

  41. Scientific Committee on Emerging and Newly Identified Health Risks (2007) The appropriateness of the risk assessment methodology in accordance with the Technical Guidance. Documents for new and existing substances for assessing the risks of nanomaterials, 21–22 June 2007. European Commission, Brussels, Belgium

  42. Servin AD, Castillo-Michel H, Hernandez-Viezcas JA, Diaz BC, Peralta-Videa JR, Gardea-Torresdey JL (2012) Synchrotron micro-XRF and micro-XANES confirmation of the uptake and translocation of TiO2 nanoparticles in cucumber (Cucumis sativus) plants. Environ Sci Technol 46:7637–7643. doi:10.1021/es300955b

    CAS  Article  Google Scholar 

  43. Servin AD, Morales MI, Castillo-Michel H, Hernandez-Viezcas JA, Munoz B, Zhao L, Nunez JE, Peralta-Videa JR, Gardea-Torresdey JL (2013) Synchrotron verification of TiO2 accumulation in cucumber fruit: a possible pathway of TiO2 nanoparticle transfer from soil into the food chain. Environ Sci Technol 47:11592–11598. doi:10.1021/es403368j

    CAS  Article  Google Scholar 

  44. Sheykhbaglou R, Sedghi M, Tajbakhsh Shishvan M, Seyed Sharifi R (2010) Effect of nano-iron particles on agronomic traits of soybean. Not Sci Biol 2:112–113

    Google Scholar 

  45. Song U, Jun H, Waldman B, Roh J, Kim Y, Yi J, Lee EJ (2013) Functional analyses of nanoparticle toxicity: a comparative study of the effects of TiO2 and Ag on tomatoes (Lycopersicon esculentum). Ecotoxicol Environ Saf 93:60–67. doi:10.1016/j.ecoenv.2013.03.033

    CAS  Article  Google Scholar 

  46. Stampoulis D, Sinha SK, White JC (2009) Assay-dependent phytotoxicity of nanoparticles in plants. Environ Sci Technol 43:9473–9479. doi:10.1021/es901695c

    CAS  Article  Google Scholar 

  47. Taiz L, Zeiger E (1998) Plant physiology, 2nd edn. Sinauer Associates, Sunderland

    Google Scholar 

  48. Trujillo-Reyes J, Majumdar S, Botez CE, Peralta-Videa JR, Gardea-Torresdey JL (2014) Exposure studies of core-shell Fe/Fe3O4 and Cu/CuO NPs to lettuce (Lactuca sativa) plants: are they a potential physiological and nutritional hazard? J Hazard Mater 267:255–263. doi:10.1016/j.jhazmat.2013.11.067

    CAS  Article  Google Scholar 

  49. Turpault MP (2006) Sampling of rhizosphere soil for physico-chemical and mineralogical analyses by physical separation based on drying and shaking. In: Luster J, Finlay R (eds) Handbook of methods used in rhizosphere research. Swiss Federal Research Institute WSL, Birmensdorf, pp 196–197

    Google Scholar 

  50. United States Environmental Protection Agency (USEPA) (2009) Test methods for evaluating solid waste: physical/chemical methods. USEPA, Washington, DC, USA. (SW-846, 3)

  51. Vittori Antisari L, Carbone S, Ferronato C, Simoni A, Vianello G (2011a) Characterization of heavy metals atmospheric deposition for assessment of urban environmental quality in the Bologna city (Italy). EQA 7:49–63. doi:10.6092/issn.2281-4485/3834

    Google Scholar 

  52. Vittori Antisari L, Carbone S, Fabrizi A, Gatti A, Vianello G (2011b) Response of soil microbial biomass to CeO2. EQA 7:1–16. doi:10.6092/issn.2281-4485/3829

    Google Scholar 

  53. Vittori Antisari L, Carbone S, Gatti A, Fabrizi A, Vianello G (2012) Toxicological effects of engineered nanoparticles on earthworms (Lumbricus rubellus) in short exposure. EQA 8:51–60. doi:10.6092/issn.2281-4485/3750

    Google Scholar 

  54. Vittori Antisari L, Carbone S, Gatti A, Vianello G, Nannipieri P (2013) Toxicity of metal oxide (CeO2, Fe3O4, SnO2) engineered nanoparticles on soil microbial biomass and their distribution in soil. Soil Biol Biochem 60:87–94. doi:10.1016/j.soilbio.2013.01.016

    CAS  Article  Google Scholar 

  55. Wang S, Kurepa J, Smalle JA (2011) Ultra-small TiO2 nanoparticles disrupt microtubular networks in Arabidopsis thaliana. Plant Cell Environ 34:811–20. doi:10.1111/j.1365-3040.2011.02284.x

    CAS  Article  Google Scholar 

  56. Wang Q, Ma X, Zhang W, Pei H, Chen Y (2012) The impact of cerium oxide nanoparticles on tomato (Solanum lycopersicum L.) and its implications for food safety. Metallomics 4:1105–1112. doi:10.1039/c2mt20149f

    CAS  Article  Google Scholar 

  57. Wang J, Koo Y, Alexander A, Yang Y, Westerhof S, Zhang Q, Schnoor JL, Colvin VL, Braam J, Alvarez PJ (2013) Phytostimulation of poplars and Arabidopsis exposed to silver nanoparticles and Ag+ at sublethal concentrations. Environ Sci Technol 47:5442–5449. doi:10.1021/es4004334

    CAS  Article  Google Scholar 

  58. Wu J, Qui H, Yang G, Dong B, Gu H (2003) Nutrient uptake of rice roots in response to infestation of Nilaparvata lugens (Stal) (Homoptera: Delphacidae). J Econ Entomol 96:1798–804

    Article  Google Scholar 

  59. Yang L, Watts DJ (2009) Particle surface characteristics may play an important role in phytotoxicity of allumina nanoparticles. Toxicol Lett 158:122–132. doi:10.1016/j.toxlet.2005.03.003

    Article  Google Scholar 

  60. Zhang Z, He X, Zhang H, Ma Y, Zhang P, Ding Y, Zhao Y (2011) Uptake and distribution of ceria nanoparticles in cucumber plants. Metallomics 3:816–822. doi:10.1039/C1MT00049G

    Article  Google Scholar 

  61. Zhao L, Videa JRP, Ramirez AV, Castillo-Michel H, Li C, Zhang J, Aguilera RJ, Keller AA, Torresdey JLG (2012) Effect of surface coating and organic matter on the uptake of CeO2 NPs by corn plants grown in soil: insight into the uptake mechanism. J Hazard Mater 225–226:131–138. doi:10.1016/j.jhazmat.2012.05.008

    Article  Google Scholar 

  62. Zhu H, Han J, Xiao JQ, Jin Y (2008) Uptake, translocation, and accumulation of manufactured iron oxide nanoparticles by pumpkin plants. J Environ Monit 10:713–717. doi:10.1039/b805998e

    CAS  Article  Google Scholar 

Download references

Acknowledgments

This study was supported by the INESE project funded by the Italian Institute of Technology (IIT, Genoa, Italy).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Serena Carbone.

Additional information

Responsible editor: Elena Maestri

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Vittori Antisari, L., Carbone, S., Gatti, A. et al. Uptake and translocation of metals and nutrients in tomato grown in soil polluted with metal oxide (CeO2, Fe3O4, SnO2, TiO2) or metallic (Ag, Co, Ni) engineered nanoparticles. Environ Sci Pollut Res 22, 1841–1853 (2015). https://doi.org/10.1007/s11356-014-3509-0

Download citation

Keywords

  • Nanoparticles
  • Tomato (Lycopersicon esculentum Mill.)
  • Pollution
  • Translocation
  • Electron microscopy
  • Inductively coupled plasma-optical emission spectrometry