Skip to main content
Log in

Leaf-age and soil-plant relationships: key factors for reporting trace-elements hyperaccumulation by plants and design applications

  • Combining Phytoextraction and Ecological Catalysis: an Environmental, Ecological, Ethic and Economic Opportunity
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Relationships between the trace-elements (TE) content of plants and associated soil have been widely investigated especially to understand the ecology of TE hyperaccumulating species to develop applications using TE phytoextraction. Many studies have focused on the possibility of quantifying the soil TE fraction available to plants, and used bioconcentration (BC) as a measure of the plants ability to absorb TE. However, BC only offers a static view of the dynamic phenomenon of TE accumulation. Accumulation kinetics are required to fully account for TE distributions in plants. They are also crucial to design applications where maximum TE concentrations in plant leaves are needed. This paper provides a review of studies of BC (i.e. soil-plant relationships) and leaf-age in relation to TE hyperaccumulation. The paper focuses of Ni and Mn accumulators and hyperaccumulators from New Caledonia who were previously overlooked until recent Ecocatalysis applications emerged for such species. Updated data on Mn hyperaccumulators and accumulators from New Caledonia are also presented and advocate further investigation of the hyperaccumulation of this element. Results show that leaf-age should be considered in the design of sample collection and allowed the reclassification of Grevillea meisneri known previously as a Mn accumulator to a Mn hyperaccumulator

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Alford ER, Pilon-Smits EAH, Paschke MW (2010) Metallophytes—a view from the rhizosphere. Plant Soil 337:33–50. doi:10.1007/s11104-010-0482-3

    Article  CAS  Google Scholar 

  • Amir H, Perrier N, Rigault F, Jaffre T (2007) Relationships between Ni-hyperaccumulation and mycorrhizal status of different endemic plant species from New Caledonian ultramafic soils. Plant Soil 293:23–35. doi:10.1007/s11104-007-9238-0

    Article  CAS  Google Scholar 

  • Assuncao AGL, Bookum WM, Nelissen HJM, Vooijs R, Schat H, Ernst WHO (2003) Differential metal-specific tolerance and accumulation patterns among Thlaspi caerulescens populations originating from different soil types. New Phytol 159:411–419. doi:10.1046/j.1469-8137.2003.00819.x

    Article  CAS  Google Scholar 

  • Baker AJM (1981) Accumulators and excluders—strategies in the response of plants to heavy-metals. J Plant Nutr 3:643–654. doi:10.1080/01904168109362867

    Article  CAS  Google Scholar 

  • Baker AJM, Brooks RR (1989) Terrestrial higher plants which hyperaccumulate metallic elements—a review of their distribution, ecology and phytochemistry. Biorecovery 1:81–126

    CAS  Google Scholar 

  • Baker A, Brooks R, Reeves R (1988) Growing for gold… and copper… and zinc. New Sci 116:44–48

    Google Scholar 

  • Barbaroux R, Plasari E, Mercier G, Simonnot MO, Morel JL, Blais JF (2012) A new process for nickel ammonium disulfate production from ash of the hyperaccumulating plant Alyssum murale. Sci Total Environ 423:111–119. doi:10.1016/j.scitotenv.2012.01.063

    Article  CAS  Google Scholar 

  • Becquer T, Bourdon E, Pétard J (1995) Disponibilité du nickel le long d’une toposéquence de sols développés sur roches ultramafiques de Nouvelle-Calédonie. C R Acad Sci 321:585–592

    CAS  Google Scholar 

  • Becquer T, Rigault F, Jaffre T (2002) Nickel bioavailability assessed by ion exchange resin in the field. Commun Soil Sci Plant Anal 33:439–450. doi:10.1081/css-120002755

    Article  CAS  Google Scholar 

  • Bert V, Bonnin I, Saumitou-Laprade P, de Laguerie P, Petit D (2002) Do Arabidopsis halleri from nonmetallicolous populations accumulate zinc and cadmium more effectively than those from metallicolous populations? New Phytol 155:47–57. doi:10.1046/j.1469-8137.2002.00432.x

    Article  CAS  Google Scholar 

  • Bidwell SD, Woodrow IE, Batianoff GN, Sommer-Knudsen J (2002) Hyperaccumulation of manganese in the rainforest tree Austromyrtus bidwillii (Myrtaceae) from Queensland, Australia. Funct Plant Biol 29:899–905. doi:10.1071/pp 01192

    Article  CAS  Google Scholar 

  • Boyd RS (2004) Ecology of metal hyperaccumulation. New Phytol 162:563–567. doi:10.1111/j.1469-8137.2004.01079.x

    Article  Google Scholar 

  • Boyd RS (2012) Plant defense using toxic inorganic ions: conceptual models of the defensive enhancement and joint effects hypotheses. Plant Sci 195:88–95. doi:10.1016/j.plantsci.2012.06.012

    Article  CAS  Google Scholar 

  • Boyd RS (2013) Exploring tradeoffs in hyperaccumulator ecology and evolution. New Phytol 199:871–872. doi:10.1111/nph.12398

    Article  Google Scholar 

  • Boyd RS, Jaffre T (2001) Phytoenrichment of soil Ni content by Sebertia acuminata in New Caledonia and the concept of elemental allelopathy. S Afr J Sci 97:535–538

    CAS  Google Scholar 

  • Boyd RS, Jaffre T (2009) Elemental concentrations of eleven New Caledonian plant species from serpentine soils: elemental correlations and leaf-age effects. Northeast Nat 16:93–110. doi:10.1656/045.016.0508

    Article  Google Scholar 

  • Boyd RS, Martens SN (1992) The Raison d’Etre for metal hyperaccumulation by plants The vegetation of ultramafic (Serpentine) soils:279–289

  • Boyd RS, Martens SN (1998) The significance of metal hyperaccumulation for biotic interactions. Chemoecology 8:1–7. doi:10.1007/s000490050002

    Article  CAS  Google Scholar 

  • Boyd RS, Jaffre T, Odom JW (1999) Variation in nickel content in the nickel-hyperaccumulating shrub Psychotria douarrei (Rubiaceae) from New Caledonia. Biotropica 31:403–410. doi:10.1111/j.1744-7429.1999.tb00382.x

    Article  Google Scholar 

  • Boyd RS, Davis MA, Balkwill K (2004) Nickel accumulation patterns in two South African Ni hyperaccumulator species Ultramafic rocks: their soils, vegetation and fauna Proceedings of the Fourth International Conference on Serpentine Ecology, Cuba, 21–26 April, 2003 275–278

  • Brooks RR, Trow JM, Veillon JM, Jaffre T (1981) Studies on manganese accumulating Alyxia species from New Caledonia. Taxon 30:420–423. doi:10.2307/1220141

    Article  Google Scholar 

  • Brooks RR, Chambers MF, Nicks LJ, Robinson BH (1998) Phytomining Trends Plant Sci 3:359–362. doi:10.1016/s1360-1385(98)01283-7

    Article  Google Scholar 

  • Callahan DL et al (2008) LC-MS and GC-MS metabolite profiling of nickel(II) complexes in the latex of the nickel-hyperaccumulating tree Sebertia acuminata and identification of methylated aldaric acid as a new nickel(II) ligand. Phytochemistry 69:240–251

    Article  CAS  Google Scholar 

  • Callahan DL, Roessner U, Dumontet V, De Livera AM, Doronila A, Baker AJM, Kolev SD (2012) Elemental and metabolite profiling of nickel hyperaccumulators from New Caledonia. Phytochemistry 81:80–89. doi:10.1016/j.phytochem.2012.06.010

    Article  CAS  Google Scholar 

  • Chaney RL, Angle JS, Broadhurst CL, Peters CA, Tappero RV, Sparks DL (2007) Improved understanding of hyperaccumulation yields commercial phytoextraction and phytomining technologies. J Environ Qual 36:1429–1443. doi:10.2134/jeq2006.0514

    Article  CAS  Google Scholar 

  • Conesa HM, Schulin R (2010) The Cartagena-La Union mining district (SE spain): a review of environmental problems and emerging phytoremediation solutions after fifteen years research. J Environ Monit 12:1225–1233

    Article  CAS  Google Scholar 

  • Cunningham SD, Berti WR (1993) Remediation of contaminated soils with green plants—an overview. In Vitro Cell Dev Biol-Plant 29P:207–212

    Article  Google Scholar 

  • Davis MA, Pritchard SG, Boyd RS, Prior SA (2001) Developmental and induced responses of nickel-based and organic defences of the nickel-hyperaccumulating shrub, Psychotria douarrei. New Phytol 150:49–58. doi:10.1046/j.1469-8137.2001.00067.x

    Article  CAS  Google Scholar 

  • Deng H, Li MS, Chen YX, Luo YP, Yu FM (2010) A new discovered manganese hyperaccumulator—Polygonum pubescens Blume. Fresenius Environ Bull 19:94–99

    CAS  Google Scholar 

  • deVarennes A, Torres MO, Coutinho JF, Rocha M, Neto M (1996) Effects of heavy metals on the growth and mineral composition of a nickel hyperaccumulator. J Plant Nutr 19:669–676. doi:10.1080/01904169609365151

    Article  CAS  Google Scholar 

  • Diesing WE et al (2008) Zinc speciation and isotopic exchangeability in soils polluted with heavy metals. Eur J Soil Sci 59:716–729. doi:10.1111/j.1365-2389.2008.01032.x

    Article  CAS  Google Scholar 

  • DIMENC (2008) Le schéma de mise en valeur des richesses minières de la Nouvelle-Calédonie

  • Enright NJ, Rigg L, Jaffre T (2001) Environmental controls on species composition along a (maquis) shrubland to forest gradient on ultramafics at Mont Do, New Caledonia. S Afr J Sci 97:573–580

    CAS  Google Scholar 

  • Ernst WHO (1996) Bioavailability of heavy metals and decontamination of soils by plants. Appl Geochem 11 doi:10.1016/0883-2927(95)00040-2

  • Ernst WHO (2000) Evolution of metal hyperaccumulation and phytoremediation hype. New Phytol 146:357–358. doi:10.1046/j.1469-8137.2000.00669.x

    Article  Google Scholar 

  • Ernst WHO (2005) Phytoextraction of mine wastes—options and impossibilities. Chem Erde-Geochem 65:29–42. doi:10.1016/j.chemer.2005.06.001

    Article  CAS  Google Scholar 

  • Escande V, Olszewski TK, Grison C (2013) Preparation of ecological catalysts derived from Zn hyperaccumulating plants and their catalytic activity in Diels–Alder reaction Comptes Rendus Chimie

  • Escande V et al (2014a) Ecological catalysis and phytoextraction: symbiosis for future. Appl Catal B-Environ 146:279–288. doi:10.1016/j.apcatb.2013.04.011

    Article  CAS  Google Scholar 

  • Escande V, Tomasz O, Eddy P, Grison C (2014b) Biosourced polymetallic catalysts: an efficient means to synthesize underexploited platform molecules from carbohydrates. Chem Sus Chem. doi:10.1002/cssc.201400078

    Google Scholar 

  • Faucon MP, Shutcha MN, Meerts P (2007) Revisiting copper and cobalt concentrations in supposed hyperaccumulators from SC Africa: influence of washing and metal concentrations in soil. Plant Soil 301:29–36. doi:10.1007/s11104-007-9405-3

    Article  CAS  Google Scholar 

  • Feng MH, Shan XQ, Zhang SZ, Wen B (2005) A comparison of the rhizosphere-based method with DTPA, EDTA, CaCl2, and NaNO3 extraction methods for prediction of bioavailability of metals in soil to barley. Environ Pollut 137:231–240

    Article  CAS  Google Scholar 

  • Fernando DR, Woodrow IE, Jaffre T, Dumontet V, Marshall AT, Baker AJM (2008) Foliar manganese accumulation by Maytenus founieri (Celastraceae) in its native New Caledonian habitats: populational variation and localization by X-ray microanalysis. New Phytol 177:178–185. doi:10.1111/j.1469-8137.2007.02253.x

    CAS  Google Scholar 

  • Fernando DR, Mizuno T, Woodrow IE, Baker AJM, Collins RN (2010) Characterization of foliar manganese (Mn) in Mn (hyper)accumulators using X-ray absorption spectroscopy. New Phytol 188:1014–1027

    Article  CAS  Google Scholar 

  • Fernando DR, Marshall A, Baker AJM, Mizuno T (2013) Microbeam methodologies as powerful tools in manganese hyperaccumulation research: present status and future directions. Front Plant Sci 4:319. doi:10.3389/fpls.2013.00319

    Article  Google Scholar 

  • Gonzaga MIS, Ma LQ, Santos JAG (2007) Effects of plant age on arsenic hyperaccumulation by Pteris vittata l. Water Air Soil Pollut 186:289–295. doi:10.1007/s11270-007-9485-y

    Article  CAS  Google Scholar 

  • Grison C, Escande V (2013a) Use of certain manganese-accumulating plants for carrying out organic chemistry reactions. WO2014016509-A1

  • Grison C, Escande V (2013b) Use of certain metal-accumulating plants for implementing organic chemistry reactions. WO 2013150197 A1

  • Grison C, Escande V, Petit E, Garoux L, Boulanger C, Grison C (2013) Psychotria douarrei and Geissois pruinosa, novel resources for the plant-based catalytic chemistry. RSC Adv 3:22340–22345. doi:10.1039/c3ra43995j

    Article  CAS  Google Scholar 

  • Hu PJ et al (2013) Nitrate facilitates cadmium uptake, transport and accumulation in the hyperaccumulator Sedum plumbizincicola. Environ Sci Pollut Res 20:6306–6316

    Article  CAS  Google Scholar 

  • Hunt AJ et al (2014) Phytoextraction as a tool for green chemistry. Green Process Synth 3:3–22

    CAS  Google Scholar 

  • Jaffré T (1977) Accumulation du manganèse par des espèces associées aux terrains ultrabasiques. C R Acad Sci Paris 284:1573–1575

    Google Scholar 

  • Jaffré T (1979) Accumulation du manganèse par les proteacées de Nouvelle-Calédonie. C R Acad Sci Paris 285:425–428

    Google Scholar 

  • Jaffré T (1980) Etude écologique du peuplement végétal des sols dérivés de roches ultrabasiques en Nouvelle Calédonie vol 124. Travaux et documents. ORSTOM, Paris

  • Jaffré T, Schmid M (1974) Accumulation de nickel par une rubiacée de Nouvelle-Calédonie, Psychotria douarrei (G. Beauvisage) Däniker Compte Rendus de l’Académie des Sciences, Paris Série D:1727–1730

  • Jaffre T, Brooks RR, Lee J, Reeves RD (1976) Sebertia acuminata: a hyperaccumulator of nickel from New Caledonia. Science 193:579–580. doi:10.1126/science.193.4253.579

    Article  CAS  Google Scholar 

  • Jaffré T, Gauthier D, Rigault F, McCoy S (1994) Les casuarinacées endémiques Bois et forêts des tropiques:4

  • Jaffre T, Pillon Y, Thomine S, Merlot S (2013) The metal hyperaccumulators from New Caledonia can broaden our understanding of nickel accumulation in plants. Front Plant Sci 4:279. doi:10.3389/fpls.2013.00279

    Article  Google Scholar 

  • Koopmans GF, Roemkens PFAM, Fokkema MJ, Song J, Luo YM, Japenga J, Zhao FJ (2008) Feasibility of phytoextraction to remediate cadmium and zinc contaminated soils. Environ Pollut 156. doi:10.1016/j.envpol.2008.05.029

  • Kruckeberg AR, Reeves RD (1995) Nickel accumulation by serpentine species of Streptanthus (Brassicaceae): field and greenhouse studies. Madrono 42:458–469

    Google Scholar 

  • L’Huillier L (1996) Biodisponibilité du nickel dans les sols ferrallitiques ferritiques de Nouvelle-Calédonie. Effets toxiques de Ni sur le développement et la physiologie du maïs

  • L’Huillier L, Edighoffer S (1996) Extractability of nickel and its concentration in cultivated plants in Ni rich ultramafic soils of New Caledonia. Plant Soil 186:255–264. doi:10.1007/bf02415521

    Article  Google Scholar 

  • Lamont BB (2003) Structure, ecology and physiology of root clusters—a review. Plant Soil 248:1–19

    Article  CAS  Google Scholar 

  • Lee J, Brooks RR, Reeves RD, Boswell CR, Jaffre T (1977) Plant-soil relationships in a New Caledonian serpentine flora. Plant Soil 46:675–680. doi:10.1007/bf00015930

    Article  CAS  Google Scholar 

  • Lhuillier L, dAuzac J, Durand M, MichaudFerriere N (1996) Nickel effects on two maize (Zea mays) cultivars: growth, structure, Ni concentration, and localization. Can J Bot-Rev Can Bot 74:1547–1554

    Article  CAS  Google Scholar 

  • Li YM et al (2003) Development of a technology for commercial phytoextraction of nickel: economic and technical considerations. Plant Soil 249:107–115. doi:10.1023/a:1022527330401

    Article  CAS  Google Scholar 

  • Lindsay W, Norvell WA (1978) Development of a DTPA soil test for zinc, iron, manganese, and copper. Soil Sci Soc Am J 42:421–428

    Article  CAS  Google Scholar 

  • Losfeld G, de la Blache PV, Escande V, Grison C (2012a) Zinc hyperaccumulating plants as renewable resources for the chlorination process of alcohols. Green Chem Lett Rev 5 doi:10.1080/17518253.2012.667157

  • Losfeld G, Escande V, de La Blache PV, L'Huillier L, Grison C (2012b) Design and performance of supported Lewis acid catalysts derived from metal contaminated biomass for Friedel-Crafts alkylation and acylation. Catal Today 189 doi:10.1016/j.cattod.2012.02.044

  • Losfeld G, Escande V, Jaffre T, L’Huillier L, Grison C (2012c) The chemical exploitation of nickel phytoextraction: an environmental, ecologic and economic opportunity for New Caledonia. Chemosphere 89:907–910

    Article  CAS  Google Scholar 

  • Macnair MR, Smirnoff N (1999) Use of zincon to study uptake and accumulation of zinc by zinc tolerant and hyperaccumulating plants. Commun Soil Sci Plant Anal 30:1127–1136. doi:10.1080/00103629909370273

    Article  CAS  Google Scholar 

  • McGrath SP, Zhao FJ (2003) Phytoextraction of metals and metalloids from contaminated soils. Curr Opin Biotechnol 14:277–282. doi:10.1016/s0958-1669(03)00060-0

    Article  CAS  Google Scholar 

  • Merlot S, Hannibal L, Martins S, Martinelli L, Amir H, Lebrun M, Thomine S (2014) The metal transporter PgIREG1 from the hyperaccumulator Psychotria gabriellae is a candidate gene for nickel tolerance and accumulation. J Exp Bot:eru025

  • Min Y, Tie B, Tang M, Aoyama I (2007) Accumulation and uptake of manganese in a hyperaccumulator Phytolacca Americana. Miner Eng 20:188–190. doi:10.1016/j.mineng.2006.06.003

    Article  CAS  Google Scholar 

  • Mizuno T, Asahina R, Hosono A, Tanaka A, Senoo K, Obata H (2008) Age-dependent manganese hyperaccumulation in Chengiopanax sciadophylloides (Araliaceae). J Plant Nutr 31:1811–1819. doi:10.1080/01904160802325396

    Article  CAS  Google Scholar 

  • Morris C, Grossl PR, Call CA (2009) Elemental allelopathy: processes, progress, and pitfalls. Plant Ecol 202:1–11

    Article  Google Scholar 

  • Morrison RS, Brooks RR, Reeves RD (1980) Nickel uptake by Alyssum species. Plant Sci Lett 17:451–457. doi:10.1016/0304-4211(80)90132-7

    Article  CAS  Google Scholar 

  • Oregon Department of Agriculture (2014) ODA Plant Programs, Noxious Weed Control yellow tuft (Alyssum murale, A. corsicum). http://www.oregon.gov/ODA/PLANT/WEEDS/pages/weed_yellowtuft.aspx

  • Peer WA, Mamoudian M, Lahner B, Reeves RD, Murphy AS, Salt DE (2003) Identifying model metal hyperaccumulating plants: germplasm analysis of 20 Brassicaceae accessions from a wide geographical area. New Phytol 159:421–430

    Article  CAS  Google Scholar 

  • Pence NS et al (2000) The molecular physiology of heavy metal transport in the Zn/Cd hyperaccumulator Thlaspi caerulescens. Proc Natl Acad Sci U S A 97:4956–4960. doi:10.1073/pnas.97.9.4956

    Article  CAS  Google Scholar 

  • Pollard AJ, Stewart HL, Roberson CB (2009) Manganese hyperaccumulation in phytolacca americana L. from the Southeastern United States. Northeast Nat 16:155–162

    Article  Google Scholar 

  • Proctor J, Phillipps C, Duff GK, Heaney A, Robertson FM (1989) Ecological studies on Gunung Silam, a small ultrabasic mountain in Sabah, Malaysia. II. Some forest processes. J Ecol 77:317–331. doi:10.2307/2260752

    Article  CAS  Google Scholar 

  • Reeves RD (1992) The hyperaccumulation of nickel by serpentine plants The vegetation of ultramafic (Serpentine) Soils:253–277

  • Reeves RD (2003) Tropical hyperaccumulators of metals and their potential for phytoextraction. Plant Soil 249:57–65. doi:10.1023/a:1022572517197

    Article  CAS  Google Scholar 

  • Reeves R, Brooks R (1983) Hyperaccumulation of lead and zinc by two metallophytes from mining areas of Central Europe Environmental pollution series A. Ecol Biol 31:277–285

    CAS  Google Scholar 

  • Robinson BH (1997) The phytoextraction of heavy-metals from metalliferous soils. Massey University

  • Robinson BH, Leblanc M, Petit D, Brooks RR, Kirkman JH, Gregg PEH (1998) The potential of Thlaspi caerulescens for phytoremediation of contaminated soils. Plant Soil 203:47–56. doi:10.1023/a:1004328816645

    Article  CAS  Google Scholar 

  • Robinson BH, Brooks RR, Gregg PEH, Kirkman JH (1999) The nickel phytoextraction potential of some ultramafic soils as determined by sequential extraction. Geoderma 87:293–304. doi:10.1016/s0016-7061(98)00062-7

    Article  CAS  Google Scholar 

  • Robinson B, Fernandez JE, Madejon P, Maranon T, Murillo JM, Green S, Clothier B (2003a) Phytoextraction: an assessment of biogeochemical and economic viability. Plant Soil 249:117–125. doi:10.1023/a:1022586524971

    Article  CAS  Google Scholar 

  • Robinson BH, Lombi E, Zhao FJ, McGrath SP (2003b) Uptake and distribution of nickel and other metals in the hyperaccumulator Berkheya coddii. New Phytol 158:279–285. doi:10.1046/j.1469-8137.2003.00743.x

    Article  CAS  Google Scholar 

  • Ross SM (1994) Toxic metals in soil-plant systems. John Wiley & Sons Ltd

  • Sas-Nowosielska A, Kucharski R, Malkowski E, Pogrzeba M, Kuperberg JM, Krynski K (2004) Phytoextraction crop disposal—an unsolved problem. Environ Pollut 128:373–379. doi:10.1016/j.envpol.2003.09.012

    Article  CAS  Google Scholar 

  • Sauve S, Hendershot W, Allen HE (2000) Solid-solution partitioning of metals in contaminated soils: dependence on pH, total metal burden, and organic matter. Environ Sci Technol 34:1125–1131. doi:10.1021/es9907764

    Article  CAS  Google Scholar 

  • Thillier Y, Losfeld G, Escande V, Dupouy C, Vasseur J-J, Debart F, Grison C (2013) Metallophyte wastes and polymetallic catalysis: a promising combination in green chemistry. The illustrative synthesis of 5 ′-capped RNA. Rsc Adv 3:5204–5212. doi:10.1039/c3ra23115a

    Article  CAS  Google Scholar 

  • van der Ent A, Baker AJM, Reeves RD, Pollard AJ, Schat H (2013a) Hyperaccumulators of metal and metalloid trace elements: facts and fiction. Plant Soil 362:319–334. doi:10.1007/s11104-012-1287-3

    Article  Google Scholar 

  • van der Ent A, Baker AJM, van Balgooy MMJ, Tjoa A (2013b) Ultramafic nickel laterites in Indonesia (Sulawesi, Halmahera): mining, nickel hyperaccumulators and opportunities for phytomining. J Geochem Explor 128:72–79

    Article  Google Scholar 

  • Verbruggen N, Hermans C, Schat H (2009) Molecular mechanisms of metal hyperaccumulation in plants. New Phytol 181:759–776. doi:10.1111/j.1469-8137.2008.02748.x

    Article  CAS  Google Scholar 

  • Wang H, Tang S-M, Liao X-J, Cao Q-M (2008) Physiological and molecular mechanisms of Mn uptake by hyperaccumulating plant Polygonum hydropiper (Polygonaceae). Acta Bot Yunnanica 30:489–495

    Google Scholar 

  • Whiting SN et al (2004) Research priorities for conservation of metallophyte biodiversity and their potential for restoration and site remediation. Restor Ecol 12:106–116. doi:10.1111/j.1061-2971.2004.00367.x

    Article  Google Scholar 

  • Xue SG, Chen YX, Reeves RD, Baker AJM, Lin Q, Fernando DR (2004) Manganese uptake and accumulation by the hyperaccumulator plant Phytolacca acinosa Roxb. (Phytolaccaceae). Environ Pollut 131:393–399

    Article  CAS  Google Scholar 

  • Yang SX, Deng H, Li MS (2008) Manganese uptake and accumulation in a woody hyperaccumulator, Schima superba. Plant Soil Environ 54:441–446

    CAS  Google Scholar 

  • Yang QW, Zeng Q, Xiao F, Liu XL, Pan J, He JF, Li ZY (2013) Investigation of manganese tolerance and accumulation of two Mn hyperaccumulators Phytolacca americana L. and Polygonum hydropiper L. in the real Mn-contaminated soils near a manganese mine. Environ Earth Sci 68:1127–1134. doi:10.1007/s12665-012-1814-9

    Article  CAS  Google Scholar 

  • Young SD, Zhang H, Tye AM, Maxted A, Thums C, Thornton I (2005) Characterizing the availability of metals in contaminated soils. I. The solid phase: sequential extraction and isotopic dilution. Soil Use Manag 21:450–458. doi:10.1079/sum2005348

    Article  Google Scholar 

  • Zhang H, Young SD (2005) Characterizing the availability of metals in contaminated soils. II. The soil solution. Soil Use Manag 21:459–467. doi:10.1079/sum2005349

    Article  Google Scholar 

  • Zhao FJ, Lombi E, McGrath SP (2003) Assessing the potential for zinc and cadmium phytoremediation with the hyperaccumulator Thlaspi caerulescens. Plant Soil 249:37–43. doi:10.1023/a:1022530217289

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Financial support from the ‘Agence Nationale pour la Recherche’ (ANR 11ECOT01101), Société Le Nickel (SLN) and Ecole Polytechnique, Paris Tech (PhD studentship) is gratefully acknowledged. Sample collection was possible with the consent of Province Nord and Province Sud of New Caledonia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claude Grison.

Additional information

Responsible editor: Philippe Garrigues

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Losfeld, G., L’Huillier, L., Fogliani, B. et al. Leaf-age and soil-plant relationships: key factors for reporting trace-elements hyperaccumulation by plants and design applications. Environ Sci Pollut Res 22, 5620–5632 (2015). https://doi.org/10.1007/s11356-014-3445-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-014-3445-z

Keywords

Navigation