Environmental Science and Pollution Research

, Volume 22, Issue 2, pp 1240–1249 | Cite as

Accelerated biodegradation of selected nematicides in tropical crop soils from Costa Rica

  • Juan Salvador Chin-Pampillo
  • Elizabeth Carazo-Rojas
  • Greivin Pérez-Rojas
  • Víctor Castro-Gutiérrez
  • Carlos E. Rodríguez-Rodríguez
Research Article


Degradation and mineralization behavior of selected nematicides was studied in soil samples from fields cultivated with banana, potato, and coffee. Degradation assays in most of the studied soils revealed shorter half-lives for carbofuran (CBF) and ethoprophos (ETP) in samples with a history of treatment with these compounds, which may have been caused by enhanced biodegradation. A short half-life value for CBF degradation was also observed in a banana field with no previous exposure to this pesticide, but with a recent application of the carbamate insecticide oxamyl, which supports the hypothesis that preexposure to oxamyl may cause microbial adaptation towards degradation of CBF, an observation of a phenomenon not yet tested according to the literature reviewed. Mineralization assays for CBF and terbufos (TBF) revealed that history of treatment with these nematicides did not cause higher mineralization rates in preexposed soils when compared to unexposed ones, except in the case of soils from coffee fields. Mineralization half-lives for soils unexposed to these pesticides were significantly shorter than most reports in the literature in the same conditions. Mineralization rates for soils with a previous exposure to these pesticides were also obtained, adding to the very few reports found. This paper contributes valuable data to the low number of reports dealing with pesticide fate in soils from tropical origin.


Enhanced biodegradation Degradation Mineralization Carbofuran Terbufos Ethoprophos Tropical soils 



This work was supported by the International Atomic Energy Agency (partial results of TC/COS5026), and Centro de Investigaciones Agronómicas (CIA), Universidad de Costa Rica.


  1. Anderson JPE, Nevermann K, Haidt H (1998) Accelerated microbial degradation of nematicides in soils: problem and its management. In: Proceedings of the XIIIth ACORBAT meeting. Guayaquil, Ecuador, pp 568–579Google Scholar
  2. Arbeli Z, Fuentes CL (2007) Accelerated biodegradation of pesticides: an overview of the phenomenon, its basis and possible solutions; and a discussion on the tropical dimension. Crop Prot 26:1733–1746CrossRefGoogle Scholar
  3. Arbeli Z, Fuentes CL (2010) Microbial degradation of pesticides in tropical soils. In: Dion P (ed) Soil biology and agriculture in the tropics. Springer, Berlin, pp 251–274CrossRefGoogle Scholar
  4. Behm JA, Higham JW, Solis F (1991) Effects of continuous and rotational applications of COUNTER® systemic insecticide-nematicide (terbufos) on nematode control, production parameters and soil degradation patterns in Costa Rican bananas (Musa AAA). In: Contreras MA, Guzmán JA, Carrasco LR (eds) Memories of the Xth ACORBAT meeting. San José, Costa Rica, pp 373–383Google Scholar
  5. Benicha M, Marabet R, Azmani A (2013) Dissipation processes of 14C-carbofuran in soil from Northwest Morocco as influenced by soil water content, temperature and microbial activity. J Environ Chem Ecotoxicol 5:119–128Google Scholar
  6. Cabrera JA, Pocasangre LE, Pattison AB, Sikora RA (2010) Terbufos biodegradability and efficacy against Radopholus similis in soils from banana cultivation having different histories of nematicide use, and the effect of terbufos on plant growth of in vitro-propagated Musa AAA cv. Grande Naine. Int J Pest Manage 56:61–67CrossRefGoogle Scholar
  7. Chapman RA, Harris CR (1990) Enhanced degradation of insecticides in soil: factors influencing the development and effects of enhanced microbial activity. In: Racke KD, Coats JR (eds) Enhanced biodegradation of pesticides in the environment. American Chemical Society, Washington DC, pp 82–96CrossRefGoogle Scholar
  8. Chaves N (2007) Utilización de bacterias y hongos endofíticos para el control biológico del nemátodo barrenador Rodopholus similis. (Cobb) Thorn. Dissertation, Centro Agronómico Tropical de Investigación y Enseñanza (in Spanish)Google Scholar
  9. Cochran RC (1995) Ethoprop: risk characterization document. Department of Pesticide Regulation, California Environmental Protection Agency. http://www.cdpr.ca.gov/docs/risk/rcd/ethoprop.pdf. Accessed 22 Mar 2014
  10. De la Cruz E, Ruepert C, Wesseling C, Monge P, Chaverri F, Castillo L, Bravo V (2004) Los plaguicidas de uso agropecuario en Costa Rica: impacto en la salud y el ambiente. IRET, Heredia, Costa Rica (in Spanish)Google Scholar
  11. Felsot AS, Maddox JV, Bruce W (1981) Enhanced microbial degradation of carbofuran in soils with histories of furadan use. Bull Environ Contamin Toxicol 26:781–788CrossRefGoogle Scholar
  12. Forrest M, Lord KA, Walker N, Woodville HC (1981) The influence of soil treatments on the bacterial degradation of diazinon and other organophosphorus insecticides. Environ Pollut Ser A 24:93–104CrossRefGoogle Scholar
  13. Galloway T, Handy R (2003) Immunotoxicity of organophosphorous pesticides. Ecotoxicology 12:345–363CrossRefGoogle Scholar
  14. García JE (1997) Introducción a los plaguicidas. Editorial Universidad Estatal a Distancia, San José (in Spanish)Google Scholar
  15. Getzin LW (1973) Persistence and degradation of carbofuran in soil. Environ Entomol 2:461–467CrossRefGoogle Scholar
  16. Gupta RC (1994) Carbofuran toxicity. J Toxicol Env Health 43:383–418CrossRefGoogle Scholar
  17. Harris CL, Chapman RA, Harris C, Tu CM (1984) Biodegradation of pesticides in soil: rapid induction of carbamate degrading factors after carbofuran treatment. J Environ Sci Heal B 19:1–11CrossRefGoogle Scholar
  18. Howard PH (1991) Handbook of environmental fate and exposure data for organic chemicals: pesticides, vol 3. Taylor and Francis, Boca RatonGoogle Scholar
  19. Karpouzas DG, Walker A (2000) Aspects of the enhanced biodegradation and metabolism of ethoprophos in soil. Pest Manag Sci 56:540–548CrossRefGoogle Scholar
  20. Karpouzas DG, Walker A, Froud-Williams RJ, Drennan DSH (1999) Evidence for the enhanced biodegradation of ethoprophos and carbofuran in soils from Greece and the UK. Pestic Sci 55:301–311CrossRefGoogle Scholar
  21. Karpouzas DG, Walker A, Drennan DSH, Froud-Williams RJ (2001) The effect of initial concentration of carbofuran on the development and stability of its enhanced biodegradation in top-soil and sub-soil. Pest Manag Sci 57:72–81CrossRefGoogle Scholar
  22. López R, Azofeifa J (1981) Reconocimiento de nemátodos fitoparásitos asociados con hortalizas en Costa Rica. Agron Costarric 5:29–35 (in Spanish)Google Scholar
  23. Moens T, Araya M, Swennen R, De Waele D (2004) Enhanced biodegradation of nematicides after repetitive applications and its effect on root and yield parameters in commercial banana plantations. Biol Fertil Soils 39:407–414CrossRefGoogle Scholar
  24. Morel-Chevillet C, Parekh NS, Pautrel D, Fournier J (1996) Cross enhancement of carbofuran biodegradation in soil samples previously treated with carbamate pesticides. Soil Biol Biochem 28:1767–1776CrossRefGoogle Scholar
  25. Ou LT, Gancarz DH, Wheeler WB, Rao PSC, Davidson JM (1982) Influence of soil temperature and soil moisture on degradation and metabolism of carbofuran in soils. J Environ Qual 11:293–298CrossRefGoogle Scholar
  26. Pattison T, Versteeg C (2000) Enhanced biodegradation of terbufos. Bananatopics 29:16–17Google Scholar
  27. Perucci P, Dumontet S, Bufo SA, Mazzatura A, Casucci C (2000) Effects of organic amendment and herbicides treatment on soil microbial biomass. Biol Fertil Soils 32:17–23CrossRefGoogle Scholar
  28. Racke KD, Coats JR (1988a) Enhanced degradation and comparative fate of carbamate insecticides in soil. J Agric Food Chem 36:1067–1072CrossRefGoogle Scholar
  29. Racke KD, Coats JR (1988b) Comparative degradation of organophosphorus insecticides in soil: specificity of enhanced microbial degradation. J Agric Food Chem 36:193–199CrossRefGoogle Scholar
  30. Racke KD, Coats JR (1990) Enhanced biodegradation of insecticides in Midwestern corn soils: ACS Symposium Series Volume 426. In: Racke KD, Coats JR (eds) Enhanced biodegradation of pesticides in the environment. American Chemical Society, Washington DC, pp 82–96CrossRefGoogle Scholar
  31. Racke KD, Skidmore MW, Hamilton DJ, Unsworth JB, Miyamoto J, Cohen SZ (1997) Pesticide fate in tropical soils. Pure Appl Chem 69:1349–1371CrossRefGoogle Scholar
  32. Read DC (1987) Greatly accelerated microbial degradation of aldicarb in re-treated field soil, in flooded soil, and in water. J Econ Entomol 80:156–163CrossRefGoogle Scholar
  33. Ruepert C (2011) Plaguicidas y otros contaminantes. Decimoséptimo informe Estado de la Nación en desarrollo humano sostenible. Programa Estado de la Nación, San José, Costa Rica (in Spanish)Google Scholar
  34. SEPSA (2013) Boletín estadístico agropecuario N°23. Secretaría Ejecutiva de Planificación Sectorial Agropecuaria. San José, Costa Rica (in Spanish)Google Scholar
  35. Servicio Fitosanitario del Estado (2014) Plaguicidas en Costa Rica: período 2008–2012 (in Spanish) http://www.sfe.go.cr/agroquimicos/Cifras_de_plaguicidas_%202008_2012.pdf. Accessed 30 Apr 2014
  36. Smelt JH, Van De Peppel-Groen AE, Van Der Pas LJT, Dijksterhuis A (1996) Development and duration of accelerated degradation of nematicides in different soils. Soil Biol Biochem 28:1757–1765CrossRefGoogle Scholar
  37. Smith LH, Liyanage JA, Watawala RC, Aravinna AGP, Kookana RS (2006) Degradation of the pesticides carbofuran and diazinon in tropical soils from Sri Lanka: Science Report 67/06. CSIRO Land and Water. http://www.clw.csiro.au/publications/science/2006/sr67-06.pdf. Accessed 22 Mar 2014
  38. Suett DL, Jukes AA, Phelps K (1993) Stability of accelerated degradation of soil-applied insecticides: laboratory behavior of aldicarb and carbofuran in relation to their efficacy against cabbage root fly (Delia radicum) in previously treated field soils. Crop Prot 12:431–442CrossRefGoogle Scholar
  39. Trabue SL, Feng X, Ogram AV, Ou LT (1997) Carbofuran degradation in soil profiles. J Environ Sci Heal B 32:861–878CrossRefGoogle Scholar
  40. University of Hertfordshire (2013) The Pesticide Properties DataBase (PPDB) developed by the Agriculture & Environment Research Unit (AERU). University of Hertfordshire. http://sitem.herts.ac.uk/aeru/ppdb/en/docs/support.htm. Accessed 5 Jul 2014
  41. US EPA (2003) Interim reregistration eligibility decision (IRED) for terbufos Case No. 0109. US Environmental Protection Agency. http://www.epa.gov/oppsrrd1/REDs/terbufos_red.pdf. Accessed 22 Mar 2014
  42. Vega E (2012) Importaciones de plaguicidas durante el período 2006 al 2009 en Costa Rica y diseño de un programa de cómputo para inclusión de datos y consulta de plaguicidas registrados en el Servicio Fitosanitario del Estado-MAG. Universidad de Costa Rica, San José (in Spanish)Google Scholar
  43. Wesseling C, Ruepert C, Chaverri F (2003) Safe use of pesticides: a developing country’s point of view. In: Pimentel D (ed) Encyclopedia of pest management. Marcel Dekker, Inc., New York, pp 1–14Google Scholar
  44. Zayed SMAD, Farghaly M, Mahdy F, El-Maghraby S, Taha H, Soliman SM (2001) Mineralization of 14C-labelled aromatic pesticide molecules in Egyptian soils under aerobic and anaerobic conditions. Impact of long term pesticide usage on soil properties using radiotracer techniques. IAEA, Vienna, pp 83–88Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Juan Salvador Chin-Pampillo
    • 1
  • Elizabeth Carazo-Rojas
    • 1
  • Greivin Pérez-Rojas
    • 1
  • Víctor Castro-Gutiérrez
    • 1
    • 2
  • Carlos E. Rodríguez-Rodríguez
    • 1
  1. 1.Centro de Investigación en Contaminación AmbientalUniversidad de Costa RicaSan JoséCosta Rica
  2. 2.Facultad de MicrobiologíaUniversidad de Costa RicaSan JoséCosta Rica

Personalised recommendations