Skip to main content

Advertisement

Log in

Hydrochemistry dynamics in remote mountain lakes and its relation to catchment and atmospheric features: the case study of Sabocos Tarn, Pyrenees

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Increasing the understanding of high mountain lake dynamics is essential to use these remote aquatic ecosystems as proxies of global environmental changes. With this aim, at Sabocos, a Pyrenean cirque glacial lake or tarn, this study shows the main results of a morphological and catchment characterization, along with statistical analyses of its hydrochemical trends and their concomitant driving factors from 2010 to 2013. Dissolved oxygen, water temperature stratification, and its snow and ice cover composition and dynamics have been also investigated. According to morphological analyses, Sabocos can be classified as a medium-large and deep lake, having a circular contour and a long water retention time as compared to Pyrenean glacial lake average values. Sabocos hydrochemistry is mainly determined by very high alkalinity, pH and conductivity levels, and high Ca2+, Mg2+, and SO4 2− content, coming from the easily weatherable limestone-dolomite bedrock. Thus, lake water is well buffered, and therefore, Sabocos tarn is non-sensitive to acidification processes. On the other hand, the main source of K+, Na+, and Cl (sea salts) and nutrients (NH4 +, NO3 , and phosphorous) to lake water appears to be atmospheric deposition. Primary production is phosphorous limited, and due to the N-saturation stage of the poorly developed soils of Sabocos catchment, NO3 is the chief component in the total nitrogen pool. External temperature seems to be the major driver regulating lake productivity, since warm temperatures boot primary production. Although precipitation might also play an important role in lake dynamics, especially regarding to those parameters influenced by the weathering of the bedrock, its influence cannot be easily assessed due to the seasonal isolation produced by the ice cover. Also, as occurs in the whole Pyrenean lake district, chemical composition of bulk deposition is highly variable due to the contribution of air masses with different origin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • AEMET (2013) Spanish Meteorological Agency. Climate monitoring summary 2010-2013. http://www.aemet.es/en/serviciosclimaticos/vigilancia_clima/resumenes?w=0&datos=2. Accessed 01/11/2013 (in Spanish)

  • AL:PE (1997) Publications and reports from the AL:PE project. http://www.mountain-lakes.org/molar/alpe/alpelit.htm. Accessed 02/10/13

  • Atlas Climático de Aragón (2013). http://www.aragon.es/DepartamentosOrganismosPublicos/Departamentos/AgriculturaGanaderiaMedioAmbiente/AreasTematicas/MA_CambioClimatico/EACCEL/LineasActuacionProyecto/ci.07_01_Atlas_Climatico_Aragon.detalleDepartamento. Accessed 28/10/13 (in Spanish)

  • Arruebo T (2014) Valoración integral de los lagos glaciares del Pirineo Aragonés: una propuesta para su gestión. PhD. Thesis. University of Zaragoza, Spain (in Spanish)

  • Arruebo T, Pardo A, Rodríguez C, Lanaja J, Del Valle J (2009) Método específico para la evaluación medioambiental de los lagos de origen glaciar pirenaicos y su aplicación al lago de Sabocos. Pirineos 164:135–164 (in Spanish)

    Article  Google Scholar 

  • Arruebo T, Santolaria Z, Pardo A (2013) Los ibones: las islas acuáticas del Pirineo. Revista Odón 4:9–17 (in Spanish)

  • Bartrons M, Camarero L, Catalan J (2010) Isotopic composition of dissolved inorganic nitrogen in high mountain lakes: variation with altitude in the Pyrenees. Biogeosciences 7:1469–1479

    Article  CAS  Google Scholar 

  • Battarbee R (2010) Mountain lakes—foreword. Hydrobiologia 648:1–2

    Article  Google Scholar 

  • Battarbee RW, Kernan M, Rose N (2009) Threatened and stressed mountain lakes of Europe: assessment and progress. Aquat Ecosyst Health Manag 12:118–128

    Article  CAS  Google Scholar 

  • Buchaca T, Catalan J (2008) On the contribution of phytoplankton and benthic biofilms to the sediment record of marker pigments in high mountain lakes. J Paleolimnol 40:369–383

    Article  Google Scholar 

  • Camarero L, Catalan J (1993) Chemistry of bulk precipitation in the Central and Eastern Pyrenees (Northeast Spain). Atmos Environ 27A(1):83–94

  • Camarero L, Catalan J (1998) A simple model of regional acidification for high mountain lakes: application to the Pyrenean Lakes (North-East Spain). Water Res 32:1126–1136

    Article  CAS  Google Scholar 

  • Camarero L, Catalan J (2012) Atmospheric phosphorus deposition may cause lakes to revert from phosphorus limitation back to nitrogen limitation. Nat Commun 3:1118

    Article  CAS  Google Scholar 

  • Camarero L et al (2009) Regionalisation of chemical variability in European mountain lakes. Freshw Biol 54:2452–2469

    Article  CAS  Google Scholar 

  • Campbell DH, Baron JS, Tonnessen KA, Brooks PD, Schuster PF (2000) Controls on nitrogen flux in alpine/subalpine watersheds of Colorado. Water Resour Res 36:37–47

    Article  CAS  Google Scholar 

  • Carignan R (1985) Quantitative importance of alkalinity flux from the sediment of acid lakes. Nature 317(12):158–160

    Article  CAS  Google Scholar 

  • Catalan J, Ballesteros E, Camarero L, Felip M, Gacia E (1992) Limnology in the Pyrenean lakes. Limnetica 8:27–38

    Google Scholar 

  • Catalan J, Ballesteros E, Garcia E, Palau A, Camarero L (1993) Chemical composition of disturbed and undisturbed high-mountain lakes in the Pyrenees: a reference for acidified sites. Water Res 27:133–141

    Article  CAS  Google Scholar 

  • Catalan J, Camarero L, Gacia E, Ballesteros E, Felip M (1994) Nitrogen in the Pyrenean lakes (Spain). Hydrobiologia 274:17–27. doi:10.1007/bf00014623

    Article  CAS  Google Scholar 

  • Catalan J et al (2002) Seasonal ecosystem variability in remote mountain lakes: implications for detecting climatic signals in sediment records. J Paleolimnol 28:25–46

    Article  Google Scholar 

  • Catalan J et al (2006) High mountain lakes: extreme habitats and witnesses of environmental changes. Limnetica 25(1–2):551–584

    Google Scholar 

  • Catalan J, Curtis CJ, Kernan M (2009) Remote European mountain lake ecosystems: regionalisation and ecological status. Freshw Biol 54:2419–2432

    Article  CAS  Google Scholar 

  • Catalan J et al (2013) Global change revealed by palaeolimnological records from remote lakes: a review. J Paleolimnol 49:513–535

    Article  Google Scholar 

  • CHE (2008) Apéndice II: Volumen de los lagos y tiempos de permanencia. Asistencia técnica para el control del estado de los lagos de la cuenca del Ebro según la Directiva 2000/60/CE. Confederación Hidrográfica del Ebro (in Spanish)

  • Cole G (1994) Textbook of limnology, 4th edn. Waveland Press, Inc, Illinois

    Google Scholar 

  • Curtis C et al (2009) Regional influence of acid deposition and climate change in European mountain lakes assessed using diatom transfer functions. Freshw Biol 54:2555–2572

    Article  CAS  Google Scholar 

  • Del Castillo M (2003) Morfometría de los lagos: Una aplicación a los lagos del Pirineo. PhD. Thesis, University of Barcelona (in Spanish)

  • Dise NB, Wright RF (1995) Nitrogen leaching from European forests in relation to nitrogen deposition. For Ecol Manag 71:153–161

    Article  Google Scholar 

  • EMERGE (2002) European mountain lake ecosystems: regionalisation, diaGnostic & socio-economic Evaluation. http://www.mountain-lakes.org/emerge/. Accessed 16/01/2013

  • EURO-LIMPACS (2010) European project to evaluate impacts of global change on freshwater ecosystems. http://www.refresh.ucl.ac.uk/eurolimpacs. Accessed 06/02/2013

  • European Union (2000) Directive 2000/60/CE of the European Parliament and of the Council establishing a framework for the community action in the field of water policy. Off J Eur Commun L 327:1–73

  • Gacia E, Ballesteros E, Camarero L, Delgado O, Palau A, Riera L, Catalan J (1994) Macrophytes from the Eastern Pyrenean lakes: composition and ordination in relation to environmental factors. Freshw Biol 32:73–81

    Article  Google Scholar 

  • Hutchinson G (1957) A treatise on limnology. Vol I. Geography, physics and chemistry. Wiley, New York

  • Kaushal SS, Lewis WM (2003) Patterns in the chemical fractionation of organic nitrogen in Rocky Mountain streams. Ecosystems 6:483–492

    Article  CAS  Google Scholar 

  • Kirillin G et al (2012) Physics of seasonally ice-covered lakes: a review. Aquat Sci 74:659–682

    Article  Google Scholar 

  • Kopacek J, Stuchlik E, Straskrabova V, Psenakova P (2000) Factors governing nutrient status of mountain lakes in the Tatra Mountains. Freshw Biol 43(3):369–383

  • Kopacek J, Stuchlik E, Wright RF (2005) Long-term trens and spatial variability in nitrate leaching from alpine catchment-lake ecosystems in the Tatra Mountain (Slovakia-Poland). Environ Pollut 136:89–101

    Article  CAS  Google Scholar 

  • Lanaja F, Arruebo T, Pardo A, Rodríguez C (2005) Evaluación de la calidad ecológica de un lago glaciar pirenaico (Ibón) afectado por la acción antrópica. Tecnol Agua 266:66–72 (in Spanish)

  • Lanaja F, Arruebo T, Pardo A, Rodríguez C, Del Valle J, Hernández C, Santolaria Z (2008) Determinación de la Calidad Ecológica de dos lagos de origen glaciar pirenaicos afectados por la acción antrópica: Sabocos y Baños. Tecnol Agua 302:66–75 (in Spanish)

  • López Moreno JI (2000) Los glaciares del alto valle del Gállego (Pirineo central) desde la Pequeña Edad de Hielo. Implicaciones en la evolución de la temperatura. Geoforma, Logroño (in Spanish)

  • Margalef R (1983) Limnología. Omega, Barcelona (in Spanish)

  • MOLAR (1999) Measuring and modelling the dynamic response of remote mountain lake ecosystems to environmental change, a programme of mountain lake research. www.mountain-lakes.org/molar/. Accessed 08/03/2013

  • Möller D (1990) The Na/Cl ratio in rainwater and the seasalt chloride cycle. Tellus B 42:254–262

    Article  Google Scholar 

  • Mosello R et al (2002) Trends in the water chemistry of high altitude lakes in Europe water, air and soil pollution. Focus 2:75–89

    CAS  Google Scholar 

  • Neal C, Kirchner JW (1999) Sodium and chloride levels in rainfall, mist, streamwater and groundwater at the Plynlimon catchments, mid-Wales: inferences on hydrological and chemical controls. Hydrol Earth Syst Sci 4:295–310

    Article  Google Scholar 

  • OECD (1982) Eutrophication of waters. Monitoring, assessment and control. OECD, Paris

    Google Scholar 

  • Pardo A (2014) A scuba diving sediment sampling methodology on bethic transects in glacial lakes: procedure description, safety measures, and test results. Environ Sci Pollut Res. doi:10.1007/s11356-014-3011-8

    Google Scholar 

  • Pardo A, Rodríguez C (2007) Diseño, construcción y prueba de la botella CRALF de muestreo puntual de agua para uso manual en entornos subacuáticos. Tecnol Agua 285:50–57 (in Spanish)

  • Pedraza J (1996) Geomorfología. Principios, métodos y aplicaciones. Rueda, Madrid (in Spanish)

    Google Scholar 

  • Redfield AC (1934) On the proportions of organic derivatives in sea water and their relation to the composition of plankton. In: Daniel RJ (ed) James Johnstone Memorial Volume. University Press of Liverpool, Liverpool, pp 176-192

  • REFRESH (2010) Adaptive strategies to mitigate the impacts of climate change on European freshwater ecosystems. http://www.refresh.ucl.ac.uk/. Accessed 20/04/2013

  • Ríos LM, Galera JM, Barettino D, Lanaja JM (1987) Sallent. In: Mapa Geológico de España, 1:50.000. Instituto Tecnológico y Geominero de España, Madrid, p 145

  • Rivas Martínez S, Bascones J, Diaz T, Fernandez F, Loidi J (1991) Vegetación del Pirineo Occidental y Navarra. Itinera Geobot 5:5–456 (in Spanish)

  • Rodríguez C, Arruebo T, Pardo A (2009) Modelo de gestión para espacios naturales de alto interés ecológico: lagos de alta montaña (ibones). Publicaciones del Consejo de protección de la Naturaleza de Aragón, Zaragoza (in Spanish)

    Google Scholar 

  • Rogora M, Mosello R, Arisci S (2003) The effect of climate warming on the hydrochemistry of Alpine Lakes. Water Air Soil Pollut 148:347–361

    Article  CAS  Google Scholar 

  • Rogora M et al (2006) An overview of atmospheric deposition chemistry over the Alps: present status and long-term trends. Hydrobiologia 562:17–40

    Article  CAS  Google Scholar 

  • Rogora M, Massaferro J, Marchetto A, Tartari G, Mosello R (2008) The water chemistry of some shallow lakes in Northern Patagonia and their nitrogen status in comparison with remote lakes in different regions of the globe. J Limnol 67:75–86

    Article  Google Scholar 

  • Stoddard JL (1994) Long-term changes in watershed retention of nitrogen: its causes and aquatic consequences. In: Baker LA (ed) Environmental Chemistry of Lakes and Reservoirs. Advances in Chemistry Series 237. American Chemical Society , Washinton DC, p 223–284

  • Thompson R, Ventura M, Camarero L (2009) On the climate and weather of mountain and sub-arctic lakes in Europe and their susceptibility to future climate change. Freshw Biol 54:2433–2451

    Article  CAS  Google Scholar 

  • Tiberti R, Tartari GA, Marchetto A (2010) Geomorphology and hydrochemistry of 12 Alpine lakes in the Gran Paradiso National Park, Italy. J Limnol 69:242–256

    Article  Google Scholar 

  • Tornimbeni O, Rogora M (2012) An evaluation of trace metals in high-altitude lakes of the Central Alps. Water Air Soil Pollut 223:1895–1909

    Article  CAS  Google Scholar 

  • Valero J (1974) Geologie structurale du Paleozoique de la région de Panticosa, Huesca province, Espagne. PhD. Thesis. University of Bourdeaux III, France (in French)

  • Wensink H (1962) Paleozoic of the upper Gallego and Ara Valleys, Huesca province, Spanish Pyrenees Estudios Geológicos 18:1-74

  • Wetzel R (2001) Limnology: lake and river ecosystems, 3rd edn. Academic Press, San Diego, 1006 pp

    Google Scholar 

  • Wright RF, Schindler DW (1995) Interaction of acid rain and global changes: effects on terrestrial and aquatic ecosystems. Water Air Soil Pollut 85:89–99

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was funded partly by the Departamento de Ciencia, Tecnología y Universidad of the Gobierno de Aragón through GATHERS (E52 research group) economical support and the predoctoral grants conceded to Z. Santolaria and T. Arruebo. Authors wish to thank all the bodies that have contributed to this study, especially during the field campaigns and sample analyses: Laboratorio de Calidad de Aguas y Medio Ambiente de la EINA (Universidad de Zaragoza), Servicio General de Apoyo a la Investigación (SAI, Universidad de Zaragoza), Zaragoza Club Odisea (ZCO), Federación Aragonesa de Actividades Subacuáticas (FARAS) and Grupo Especial de Actividades Subacuáticas de la Guardia Civil (GEAS), Unidad Militar de Emergencias (UME), and Aramón-Panticosa.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zoe Santolaria.

Additional information

Responsible editor: Philippe Garrigues

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Santolaria, Z., Arruebo, T., Urieta, J.S. et al. Hydrochemistry dynamics in remote mountain lakes and its relation to catchment and atmospheric features: the case study of Sabocos Tarn, Pyrenees. Environ Sci Pollut Res 22, 231–247 (2015). https://doi.org/10.1007/s11356-014-3310-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-014-3310-0

Keywords

Navigation