Skip to main content

Advertisement

Log in

Dynamic energy budget model: a monitoring tool for growth and reproduction performance of Mytilus galloprovincialis in Bizerte Lagoon (Southwestern Mediterranean Sea)

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Mussel farming is the main economic activity in Bizerte Lagoon, with a production that fluctuates depending on environmental factors. In the present study, we apply a bioenergetic growth model to the mussel Mytilus galloprovincialis, based on dynamic energy budget (DEB) theory which describes energy flux variation through the different compartments of the mussel body. Thus, the present model simulates both mussel growth and sexual cycle steps according to food availability and water temperature and also the effect of climate change on mussel behavior and reproduction. The results point to good concordance between simulations and growth parameters (metric length and weight) for mussels in the lagoon. A heat wave scenario was also simulated using the DEB model, which highlighted mussel mortality periods during a period of high temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Aloui-Béjaoui N (1998) Ecobiologie de la population de moules Mytilus galloprovincialis Lamarck (1819) du Lac de Bizerte. Thèse de Doctorat, Faculté des Sciences de Tunis, 263 pp

  • Anestis A, Lazou A, Portner HO, Michaelidis B (2007) Behavioral, metabolic, and molecular stress responses of marine bivalve Mytilus galloprovincialis during long-term acclimation at increasing ambient temperature. Am J Physiol Regul Integr Comp Physiol 293:911–921

    Article  Google Scholar 

  • Bacher C, Heral M, Deslous-Paoli JM, Razet D (1991) Modèle énergétique uniboite de la croissance des huîtres (Crassostrea gigas) dans le bassin de Marennes-Oléron. Can J Fish Aquat Sci 48:391–404

    Article  Google Scholar 

  • Bacher C, Gangnery (2006) Use of dynamic energy budget and individual based models to simulate the dynamics of cultivated oyster populations. J Sea Res 56:140–155

    Article  Google Scholar 

  • Barillé A L (1991) Contribution à l’étude des potentialités conchylicoles du Pertuis Breton. Thèse de Doctorat. Université d’Aix-Marseille II, France, 312 p

  • Barillé L, Héral M, Barillé-Boyer AL (1997) Ecophysiological deterministic model for Crassostrea gigas in an estuarine environment. Aquat Living Resour 10:31–48

    Article  Google Scholar 

  • Bayne BL (1976) Marine mussels: their ecology and physiology. Cambridge University Press, Cambridge, p 506

    Google Scholar 

  • Béjaoui B, Harzallah A, Moussa M, Chapelle A, Solidoro C (2008) Analysis of hydrobiological pattern in the Bizerte lagoon (Tunisia). Estuar Coast Shelf Sci 80:121–129

    Article  Google Scholar 

  • Béjaoui B (2009) Développement d'un modèle tri-dimensionnel couplé Dynamique-Ecologie: Application à la lagune de Bizerte. Thèse de Doctorat, Ecole Nationale d'Ingénieurs de Tunis, 209 p

  • Béji O (2000) Les ressources vivantes exploitables du lac de Bizerte: Etat actuel et potentialités, Partie I. Bulletin de l’Institut National des Sciences et Technologies de la Mer de Salambô 27:45–60

    Google Scholar 

  • Berthelin C, Kellner K, Mathieu M (2000) Storage metabolism in the Pacific oyster (Crassostrea gigas) in relation to summer mortalities and reproductive cycle (west coast of France). Comp Biochem Physiol 125:359–369

    Article  CAS  Google Scholar 

  • Boukef Ben Omrane I, Elbour M, Belhassen M, Mraouna R, Mejri S, Béjaoui B, Harzallah A, Boudabous A (2010) Distribution spatiale des Vibrionaceae dans les sédiments lagunaires (la lagune de Bizerte, Nord Tunisie). Revue de Microbiologie Industrielle Sanitaire et Environnementale 4:83–94

    Google Scholar 

  • Bourlès Y, Alunno-Bruscia M, Pouvreau S, Tollu G, Leguay D, Arnaud B, Goulletquer P, Kooijman SALM (2009) Modelling growth and reproduction of the Pacific oyster Crassostrea gigas: advances in the oyster-DEB model through application to a coastal pond. J Sea Res 62:62–71

    Article  Google Scholar 

  • Chapelle A (1995) A preliminary model of nutrient cycling in sediments of a Mediterranean lagoon. Ecol Model 80:131–147

    Article  CAS  Google Scholar 

  • Casas S, Bacher C (2006) Modelling trace metal (Hg and Pb) bioaccumulation in the Mediterranean mussel, Mytilus galloprovincialis, applied to environmental monitoring. J Sea Res 56:168–181

    Article  CAS  Google Scholar 

  • Chávez-Villalba J, Pommier J, Andriamiseza J, Pouvreau S, Barret J, Cochard JC, Le Pennec M (2002) Broodstock conditioning of the oyster Crassostrea gigas: origin and temperature effect. Aquaculture 214:115–130

    Article  Google Scholar 

  • Delaporte M (2005) Modulation des paramètres hémocytaires par la nutrition chez l’huitre creuse Crassostrea gigas. Implication dans les mortalités estivales. Thèse de Doctorat. Université de Rennes 1, 362 p

  • Deslous-Paoli JM, Heral M (1988) Biochemical composition and energy value of Crassostrea gigas (Thunberg) cultured in the bay of Marennes-Oleron. Aquat Living Resour 1:239–249

    Article  Google Scholar 

  • Essid N, Mahmoudi E, Boufahja F, Dellali M, Beyrem H, Aissa P (2008) Impact des pseudo-féces de moules sur la densité des bactéries hétérotrophes dans le secteur mytilicole de la lagune de Bizerte (Tunisie). Revue des Sciences de l’Eau 20:383–392

    Article  Google Scholar 

  • Fertouna-Bellakhal M, Dhib A, Béjaoui B, Turki S, Aleya L (2014) Driving factors behind the distribution of dinocyst composition and abundance in surface sediments in a western Mediterranean coastal lagoon: report from a high resolution mapping study. Mar Pollut Bull 84:347–362

  • Fréchette M (2012a) Self-thinning, biodeposit production, and organic matter input to the bottom in mussel suspension culture. J Sea Res 67:10–20

    Article  Google Scholar 

  • Fréchette M (2012b) A model of clearance rate regulation in mussels. J Sea Res 73:32–40

    Article  Google Scholar 

  • Gangnery A (2003) Etude et modélisation de la dynamique des populations de bivalves en élevage (Crassostrea gigas et Mytilus galloprovincialis) dans le bassin de Thau (Méditerranée, France) et des ascidies solitaires associées. PhD Thesis, Université Montpellier II, 175 p

  • Grant J, Bacher C (1998) Comparative models of mussel bioenergetics and their validation at field culture sites. J Exp Mar Biol Ecol 219:21–44

    Article  Google Scholar 

  • Hawkins AJS, Bayne BL, Bougrier S, Heral M, Iglesias JIP, Navarro E, Smith RFM, Urrutia MB (1998) Some general relationships in comparing the feeding physiology of suspension-feeding bivalve molluscs. J Exp Mar Biol Ecol 219:87–103

    Article  Google Scholar 

  • Ifremer (2007) Réseau de Suivi Lagunaire du Languedoc-Roussillon: Bilan des résultats 2006. Rapport RSL-07, 484 p

  • Kooijman SALM (1986) Energy budgets can explain body size relations. J Theor Biol 121:269–282

    Article  Google Scholar 

  • Kooijman SALM (2000) Dynamic energy and mass budgets in biological systems. Cambridge University Press, Cambridge, p 419

    Book  Google Scholar 

  • Lubet P, Aloui N (1987) Limites létales thermiques et action de la température sur les gamétogenèses et l’activité neurosecrétrice chez la moule (Mytilus edulis et Mytilus galloprovincialis, mollusque bivalve). Haliotis 16:309–316

    Google Scholar 

  • Oueryemi N (2004) Influence de la densité d’élevage sur la croissance des moules Mytilus galloprovincialis dans le parc conchylicole de Menzel Jemil. Diplôme d’études approfondies, Faculté des Sciences de Bizerte, 85 p

  • Pecquerie L, Petitgas P, Kooijman SALM (2009) Modeling fish growth and reproduction in the context of the Dynamic Energy Budget theory to predict environmental impact of anchovy spawning duration. J Sea Res 62:93–105

    Article  Google Scholar 

  • Perdue JA (1983) The relationship between the gametogenic cycle of the Pacific oyster, Crassostrea gigas, and the summer mortality phenomenon in strains of selectively bred oysters. PhD Thesis, University of Washington, Seattle, WA, 205 p

  • Pouvreau S, Bourles Y, Lefebvre S, Gangnery A, Alunno-Bruscia M (2006) Application of a dynamic energy budget model to the Pacific oyster, Crassostrea gigas, reared under various environmental conditions. J Sea Res 56:156–167

    Article  Google Scholar 

  • Raillard O, Dcslous-Paoli JM, Héral M, Razct D (1993) Modélisation du comportement nutritionnel et de la croissance de l'huître japonaise Crassostrea gigas. Oceanol Acta 16:73–82

    Google Scholar 

  • Ren JS, Ross AH (2001) A dynamic energy budget model of the Pacific oyster Crassostrea gigas. Ecol Model 142:105–120

    Article  Google Scholar 

  • Ross AH, Nisbet RM (1990) Dynamic models of growth and reproduction of the mussel Mytilus edulis L. Funct Ecol 4:777–797

    Article  Google Scholar 

  • Sahraoui I, Sakka HA, Hadj MH, Leger C, Bates SS (2009) Blooms of the diatoms genus Pseudo-nitzschia H. Peragallo in Bizerte lagoon (Tunisia, SW Mediterranean). Diatom Res 24:175–190

    Article  Google Scholar 

  • Sakka Hlaili A, Grami B, Hadj Mabrouk H, Gosselin M, Hamel D (2007) Phytoplancton growth and microzooplanton grazing rates in a restricted Mediterranean lagoon (Bizerte lagoon, Tunisia). Mar Biol 151:767–783

    Article  Google Scholar 

  • Schneider DW (1992) A bioenergetics model of zebra mussel, Dreissena polymorpha, growth in the Great Lakes. Can J Fish Aquat Sci 49:1406–1416

    Article  Google Scholar 

  • Scholten H, Smaal AC (1998) Responses of Mytilus edulis L. to varying food concentrations: testing EMMY, an ecophysiological model. J Exp Mar Biol Ecol 219:217–239

    Article  Google Scholar 

  • Thomas Y, Mazurié J, Bouget JF, Pouvreau S, Bacher C, Gohin F (2006) Modélisation de la croissance des moules Mytilus edulis en fonction des pratiques culturales et de données environnementales; Application aux résultats de 2003–2004 en Baie du Mont Saint Michel. Ifremer, Rapport interne, LER-MPL

  • Turki S, Dhib A, Belakhal MF, Frossard V, Balti N, Kharrat R, Aleya L (2014) Harmful algal blooms (HABs) associated with phycotoxins in shellfish: What can be learned from five years of monitoring in Bizerte Lagoon (Southern Mediterranean Sea)? Ecol Eng 67:39–47

  • Van der Veer HW, Cardoso JFMF, Van der Meer J (2006) Estimation of DEB parameters for various North Atlantic bivalve species. J Sea Res 56:107–124

    Article  Google Scholar 

  • Van Haren RJF, Kooijman SALM (1993) Application of a dynamic energy budget model to Mytilus edulis (L.), Netherlands. J Sea Res 31:119–133

    Article  Google Scholar 

  • Zaaboub N, Ounis A, Helali MA, Béjaoui B, Lillebø AI, Ferreira da Silva, E, Aleya L (2014) Phosphorus speciation in sediments and assessment of nutrient exchange at the water-sediment interface in a Mediterranean lagoon: Implications for management and restoration. Ecol Eng (Accepted)

Download references

Acknowledgments

This study is part of a collaborative project between the Institut National des Sciences et Technologie de la Mer, Tunisia (INSTM) and the University of Franche-Comté (Chrono-Environnement, UMR CNRS 4269, Besançon, France). The authors are grateful to Professor Cedric Bacher for providing us with the model. We express our appreciation to the anonymous reviewers for improving our paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lotfi Aleya.

Additional information

Responsible editor: Philippe Garrigues

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Béjaoui-Omri, A., Béjaoui, B., Harzallah, A. et al. Dynamic energy budget model: a monitoring tool for growth and reproduction performance of Mytilus galloprovincialis in Bizerte Lagoon (Southwestern Mediterranean Sea). Environ Sci Pollut Res 21, 13081–13094 (2014). https://doi.org/10.1007/s11356-014-3265-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-014-3265-1

Keywords

Navigation