Skip to main content
Log in

Weighted species sensitivity distribution method to derive site-specific quality criteria for copper in Tai Lake, China

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Tai Lake (Ch: Taihu), which is the largest lake in Jiangsu province, China, has been affected by human activities. As part of a concerted effort to improve water quality to protect the integrity of the Tai Lake ecosystem, a water quality criterion (WQC) was developed for copper (Cu) II. The acute WQC was based on 440 values for acute toxicity of Cu to 24 species from 6 phyla, 16 families, and 20 genera. In addition, 255 values for chronic toxicity of Cu to 10 species from 5 phyla, 8 families, and 9 genera were used to derive chronic WQC. Instead of using a traditional approach based species sensitivity distributions (SSD), a weighted species sensitivity distribution (WSSD) approach was used to calculate the cumulative probability based on endemic species to Tai Lake. Acute and chronic WQC developed by use of the WSSD were 5.3 and 3.7 μg Cu/L, respectively. While the WQC values were comparable to those of other countries, there were slight differences due to variability in species composition of different regions. The site-specific criteria indicated that the current standard set for surface water by the Chinese government might not be protective of aquatic organisms in Tai Lake.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig 1
Fig 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • ANZE, Australian and New Zealand Environment Conservation Council and Agriculture and Resource Management Council of Australia and New Zealand (2000) Australia and New Zealand guidelines for fresh and marine water quality [R]. ANZECC and ARMCANZ, Australia

    Google Scholar 

  • Baatrup E (1999) Structural and function effects of heavy metals on the nervous system, including sense organs of fish [J]. Comp Biochem Physiol 100C:253–257. doi:10.1016/0742-8413(91)90163-N

    Google Scholar 

  • CCME, Canadian Council of Ministers of the Environment (1999) Protocol for the derivation of water quality guidelines for the protection of aquatic life [R]. Canadian Council of Ministers of the Environment, Winnipeg

    Google Scholar 

  • Chapman PM, Wang F, Janssen C et al (1998) Ecotoxicology of metals in aquatic sediments: binding and release, bioavailability, risk assessment, and remediation [J]. Can J Fish Aquat Sci 55(10):2221–2243. doi:10.1139/f98-145

    Article  CAS  Google Scholar 

  • Chen JC, Lin CH (2001) Toxicity of copper sulfate for survival, growth, molting and feeding of juveniles of the tiger shrimp, Penaeusmonodon [J]. Aquaculture 192:55–65. doi:10.1016/S0044-8486(00)00442-7

    Article  CAS  Google Scholar 

  • Chen Y, Huang J, Xing LQ et al (2014) Effects of multi-generational exposures of D. magna to environmentally relevant concentrations of pentachlorophenol [J]. Environ Sci Pollut Res 21:234–243. doi:10.1007/s11356-013-1692-z

    Article  CAS  Google Scholar 

  • China EPA, China State Environmental Protection Administration (2002) GB3838-2002. Environmental quality standard for surface water (in Chinese). China Standards Press, Beijing

    Google Scholar 

  • Di Toro DM, Allen HE, Bergman HL et al (2001) Biotic ligand model of the acute toxicity of metals. 1. Technical basis. Environ Toxicol Chem 20(10):2383–2396. doi:10.1897/1551-5028 (2001) 0202.0.CO;2

    Article  Google Scholar 

  • Duboudin C, Ciffroy P, Magaud H (2004) Effects of data manipulation and statistical methodson species sensitivity distributions [J]. Environ Toxicol Chem 23(2):489–499. doi:10.1897/03-159

    Article  CAS  Google Scholar 

  • EMEA (2004a) Committee for Medicinal Products for Veterinary Use (CVMP): Guideline on environmental impact assessment for veterinary medicinal products phase II. European Medicines Agency Veterinary Medicines and Inspections. EMEA, London, UK

    Google Scholar 

  • EMEA (2004b) Committee for Medicinal Products for Human Use (CHMP): Guideline on the environmental risk assessment of medicinal products for human use. European Medicines Agency Pre-Authorization Evaluation of Medicines for Human Use. EMEA, London, UK

    Google Scholar 

  • European Commission (2003) Technical guidance document in support of Commission Directive 93/67/EEC on risk assessment for new notified substances. Commission Regulation (EC) 1488/94 on risk assessment for existing substances and Directive 98/8/EC of the European Parliament and of the Council concerning the placing of biocidal products on the market. Ispra, Italy, p328

  • Feng CL, Wu FC, Zhao XL et al (2012) Water quality criteria research and progress [J]. Sci China Earth Sci 55(6):882–891. doi:10.1007/s11430-012-4384-5

    Article  CAS  Google Scholar 

  • Forbes VE, Calow P (2002) Species sensitivity distributions revisited: a critical appraisal [J]. Hum Ecol Risk Assess 8(3):473–492. doi:10.1080/10807030290879781

    Article  Google Scholar 

  • Forbes TL, Forbes VE (1993) A critique of the use of distribution based extrapolation models in ecotoxicology [J]. Funct Ecol 7:249–254

    Article  Google Scholar 

  • Giesy JP, Solomon KR, Coats JR et al (1999) Ecological risk assessment of Chlorpyrifos in North American aquatic environments [J]. Rev Environ Contam Toxicol 160:121–129. doi:10.1007/978-1-4612-1498-4_1

    Google Scholar 

  • Hall LW, Scott MC, Killen WD (1998) Ecological risk assessment of copper and cadmium in surface waters of Chesapeake Bay watershed [J]. Environ Toxicol Chem 17:1172–1189

    Article  CAS  Google Scholar 

  • Jin X, Zha J, Xu Y et al (2012a) Toxicity of pentachlorophenol to native aquatic species in the Yangtze River [J]. Environ Sci Pollut Res 19:609–618. doi:10.1007/s11356-011-0594-1

    Article  CAS  Google Scholar 

  • Jin X, Zha J, Xu Y et al (2012b) Derivation of predicted no effect concentrations (PNEC) for 2,4,6-trichlorophenol based on Chinese resident species [J]. Chemosphere 86:17–23. doi:10.1016/j.chemosphere.2011.08.040

    Article  CAS  Google Scholar 

  • Jin X, Wang Z, Giesy JP et al (2014) Development of aquatic life criteria in China: viewpoint on the challenge [J]. Environ Sci Pollut Res 21:234–243. doi:10.1007/s11356-013-1667-0

    Article  Google Scholar 

  • Klimisch HJ, Andreae M, Tillmann U (1997) A systematic approach for evaluating the quality of experimental toxicological and ecotoxicological data [J]. Regul Toxicol Pharmacol 25(1):1–5. doi:10.1006/rtph.1996.1076

    Article  CAS  Google Scholar 

  • Kooijman SALM (1987) A safety factor for LC50 values allowing for differences in sensitivity among species [J]. Water Res 21:269–276. doi:10.1016/0043-1354(87)90205-3

    Article  CAS  Google Scholar 

  • Li US, Wu FC, Cui XY et al (2013) Derivation of an aquatic predicted no-effect concentration for endocrine disruptor effects of 17β-estradiol. Rev Environ Contam Toxicol 228:31–56

    Google Scholar 

  • Liu YD, Wu FC, Mu Y-S et al (2014) Setting water quality criteria in China: approaches for developing species sensitivity distributions for metals and metalloids [J]. Rev Environ Contam Toxicol 230:35–58. doi:10.1007/978-3-319-04411-8_2

    Google Scholar 

  • McCormick FH, Hill BH, Parrish LP et al (1994) Mining impacts on fish assemblages in the Eagle and Arkansas rivers, Colorado [J]. J Freshwater Ecol 9:175–179. doi:10.1080/02705060.1994.9664884

    Article  Google Scholar 

  • Meng W, Zhang Y, Zheng BH (2006) The quality criteria, standards of water environment and the water pollutant control strategy on watershed [J]. Res Environ Sci 19:1–3 (in Chinese)

    Google Scholar 

  • Mu YS, Wu FC, Chen C et al (2014) Predicting criteria continuous concentrations of 34 metals or metalloids by use of quantitative ion character-activity relationships species sensitivity distributions (QICAReSSD) model [J]. Environ Pollut 188:50–55. doi:10.1016/j.envpol.2014.01.011

    Article  CAS  Google Scholar 

  • Posthuma L, Suter GW II, Traas TP (eds) (2002) Species-sensitivity distributions in ecotoxicology. Lewis, Boca Raton, FL, USA

    Google Scholar 

  • Santore RC, Di Toro DM, Paquin PR et al (2001) Biotic ligand model of the acute toxicity of metals. 2. Application to acute copper toxicity in freshwater fish and Daphnia [J]. Environ Toxicol Chem 20(10):2397–2402. doi:10.1002/etc.5620201035

    Article  CAS  Google Scholar 

  • Schuler L, Hoang T, Rand G (2008) Aquatic risk assessment of copper in freshwater and saltwater ecosystems of South Florida. Ecotoxicology 17:642–659. doi:10.1007/s10646-008-0236-7

    Article  CAS  Google Scholar 

  • Stephan CE, Mount DI, Hansen DJ et al (1985) Guidelines for deriving numerical national water quality criteria for the protection of aquatic organisms and their uses. PB85-227049. National Technical Information Service, Springfield, VA, USA

    Google Scholar 

  • Su Hailei (2011) The aquatic biota characteristics of Tai Lake and its relationship with the derivation of lake water quality criteria in China. Chinese Research Academy of Environmental Sciences, Thesis of Master Degree

  • Su HL, Wu F-C, Zhang R-Q et al (2014) Toxicity reference values for protecting aquatic birds in China from effects of polychlorinated biphenyls. Rev Environ Contam Toxicol 230:59–82

    Google Scholar 

  • Suter GW, Cormier SM (2008) What is meant by risk-based environmental quality criteria [J]? Integr Environ Assess Manag 4:486–489. doi:10.1897/IEAM_2008-017.1

    Article  Google Scholar 

  • US EPA, United States Environment Protection Agency (2006) National recommended water quality criteria. Office of Water, Office of Science and Technology, Washington

    Google Scholar 

  • Van Sprang PA, Verdonck FAM, Vanrolleghem PA et al (2004) Probabilistic environmental risk assessment of zinc in Dutch surface waters [J]. Environ Toxicol Chem 23:2993–300. doi:10.1897/03-444.1

    Article  Google Scholar 

  • Wheeler JR, Grist EPM, Leung KMY et al (2002) Species sensitivity distributions: data and model choice [J]. Mar Pollut Bull 45:192–202. doi:10.1016/S0025-326X(01)00327-7

    Article  CAS  Google Scholar 

  • Wu FC, Meng W, Zhao XL et al (2010) China embarking on development of its own national water quality criteria system [J]. Environ Sci Technol 44:7992–7993. doi:10.1021/es1029365

    Article  CAS  Google Scholar 

  • Wu FC, Feng CL, Cao YJ et al (2011) Aquatic life ambient freshwater quality criteria for copper in China [J]. Asian J Ecotoxicol 6(6):617–628 (in Chinese)

    Google Scholar 

  • Wu FC, Mu YS, Hong C et al (2013) Predicting water quality criteria for protecting aquatic life from physico-chemical properties of metals [J]. Environ Sci Technol 47:446–453

    Article  CAS  Google Scholar 

  • Xing LQ, Liu HL, Giesy JP et al (2012) pH-dependent aquatic criteria for 2,4-dichlorophenol, 2,4,6-trichlorophenol and pentachlorophenol [J]. Sci Total Environ 441C:125–131. doi:10.1016/j.scitotenv.2012.09.060

    Article  Google Scholar 

  • Xing LQ, Liu HL, Zhang XW et al (2014) A comparison of statistical methods for deriving freshwater quality criteria for the protection of aquatic organisms [J]. Environ Sci Pollut Res 21:159–167. doi:10.1007/s11356-013-1462-y

    Article  Google Scholar 

  • Yin DQ, Jin HJ, Yu LW et al (2003) Deriving freshwater quality criteria for 2,4-dichlorophenol for protection of aquatic life in China [J]. Environ Pollut 122:217–222. doi:10.1016/S0269-7491(02)00292-0

    Article  CAS  Google Scholar 

  • Zhang R, Wu FC, Li HX et al (2013) Toxicity reference values and tissue residue criteria for protection of avian wildlife exposed to methylmercury in China. Rev Environ Contam Toxicol 223:53–80

    Google Scholar 

  • Zhou QX, Luo Y, Zhu LY (2007) Scientific research on environmental benchmark values and revision of national environmental standards in China [J]. J Agron-Environ Sci 26(1):1–5 (in Chinese)

    CAS  Google Scholar 

Download references

Acknowledgments

This work was jointly funded by the National Natural Science Foundation of China (No. 21377053 and 20977047), Major National Science and Technology Projects (No. 2012ZX07506-001 and 2012ZX07501-003-02). Prof. Giesy was supported by the program of 2012 “High Level Foreign Experts” (No. GDW20123200120) funded by the State Administration of Foreign Experts Affairs, the People’s Republic of China to Nanjing University, and the Einstein Professor Program of the Chinese Academy of Sciences. He was also supported by the Canada Research Chair program, a Visiting Distinguished Professorship in the Department of Biology and Chemistry and State Key Laboratory in Marine Pollution, City University of Hong Kong. Great thanks to David Saunders, a vanier scholar in ecotoxicology studying in Toxicology Centre, University of Saskatchewan, for his time in polishing our manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongling Liu.

Additional information

Responsible editor: Thomas Braunbeck

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 127 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shi, R., Yang, C., Su, R. et al. Weighted species sensitivity distribution method to derive site-specific quality criteria for copper in Tai Lake, China. Environ Sci Pollut Res 21, 12968–12978 (2014). https://doi.org/10.1007/s11356-014-3156-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-014-3156-5

Keywords

Navigation