Bioremediation treatment of hydrocarbon-contaminated Arctic soils: influencing parameters

Abstract

The Arctic environment is very vulnerable and sensitive to hydrocarbon pollutants. Soil bioremediation is attracting interest as a promising and cost-effective clean-up and soil decontamination technology in the Arctic regions. However, remoteness, lack of appropriate infrastructure, the harsh climatic conditions in the Arctic and some physical and chemical properties of Arctic soils may reduce the performance and limit the application of this technology. Therefore, understanding the weaknesses and bottlenecks in the treatment plans, identifying their associated hazards, and providing precautionary measures are essential to improve the overall efficiency and performance of a bioremediation strategy. The aim of this paper is to review the bioremediation techniques and strategies using microorganisms for treatment of hydrocarbon-contaminated Arctic soils. It takes account of Arctic operational conditions and discusses the factors influencing the performance of a bioremediation treatment plan. Preliminary hazard analysis is used as a technique to identify and assess the hazards that threaten the reliability and maintainability of a bioremediation treatment technology. Some key parameters with regard to the feasibility of the suggested preventive/corrective measures are described as well.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3

References

  1. Allen MR (1999) Bioremediation of hydrocarbon contaminated Arctic soils. Royal Military College of Canada

  2. AMAP (1998) AMAP assessment report: Arctic pollution issues. Arctic Monitoring and Assessment Program (AMAP), Oslo

  3. Anjum R, Rahman M, Masood F, Malik A (2012) Bioremediation of pesticides from soil and wastewater. In: Environmental protection strategies for sustainable development. Springer, pp 295–328

  4. Antizar-Ladislao B, Lopez-Real J, Beck AJ (2006) Bioremediation of polycyclic aromatic hydrocarbons (PAH) in an aged coal-tar-contaminated soil using different in-vessel composting approaches. J Hazard Mater 137(3):1583–1588. doi:10.1016/j.jhazmat.2006.04.056

    Article  CAS  Google Scholar 

  5. Atlas RM (1981) Microbial degradation of petroleum hydrocarbons: an environmental perspective. Microbiol Rev 45(1):180–209

    CAS  Google Scholar 

  6. Balba M, Al-Awadhi N, Al-Daher R (1998) Bioremediation of oil-contaminated soil: microbiological methods for feasibility assessment and field evaluation. J Microbiol Methods 32(2):155–164. doi:10.1016/S0167-7012(98)00020-7

    Article  CAS  Google Scholar 

  7. Bhandari A, Surampalli RY, Champagne P, Ong SK, Tyagi RD, Lo IMC (2007) Remediation technologies for soils and groundwater. American Society of Civil Engineers. Reston, USA

    Google Scholar 

  8. Braddock JF, Lindstrom JE, Prince RC (2003) Weathering of a subarctic oil spill over 25 years: the Caribou–Poker Creeks Research Watershed experiment. Cold Reg Sci Technol 36(1–3):11–23. doi:10.1016/S0165-232X(02)00076-9

    Article  Google Scholar 

  9. Braddock JF, McCarthy KA (1996) Hydrologic and microbiological factors affecting persistence and migration of petroleum hydrocarbons spilled in a continuous-permafrost region. Environ Sci Technol 30(8):2626–2633

    Article  CAS  Google Scholar 

  10. Børresen M, Rike A (2007) Effects of nutrient content, moisture content and salinity on mineralization of hexadecane in an Arctic soil. Cold Reg Sci Technol 48(2):129–138. doi:10.1016/j.coldregions.2006.10.006

    Article  Google Scholar 

  11. Chang Z-Z, Weaver RW (1998) Organic bulking agents for enhancing oil bioremediation in soil. Bioremediat J 1(3):173–180

    Article  CAS  Google Scholar 

  12. Chemlal R, Tassist A, Drouiche M, Lounici H, Drouiche N, Mameri N (2012) Microbiological aspects study of bioremediation of diesel-contaminated soils by biopile technique. Int Biodeterior Biodegradation 75(0):201–206. doi:10.1016/j.ibiod.2012.09.011

    Article  CAS  Google Scholar 

  13. Cheremisinoff NP, Rosenfeld P (2009) Chapter 4 — Exxon Valdez oil spill. In: Cheremisinoff NP, Rosenfeld P (eds) Handbook of pollution prevention and cleaner production — best practices in the petroleum industry. William Andrew Publishing, Oxford, pp 113–119. doi:10.1016/B978-0-8155-2035-1.10004-1

    Google Scholar 

  14. Colla TS, Andreazza R, Bücker F, de Souza MM, Tramontini L, Prado GR, Frazzon APG, de Oliveira Camargo FA, Bento FM (2013) Bioremediation assessment of diesel–biodiesel-contaminated soil using an alternative bioaugmentation strategy. Environ Sci Pollut Res: 1–11. doi:10.1007/s11356-013-2139-2

  15. Couto N, Fritt-Rasmussen J, Jensen PE, Højrup M, Rodrigo AP, Ribeiro AB (2014) Suitability of oil bioremediation in an Artic soil using surplus heating from an incineration facility. Environ Sci Pollut Res. doi:10.1007/s11356-013-2466-3

    Google Scholar 

  16. Dejonghe W, Boon N, Seghers D, Top EM, Verstraete W (2001) Bioaugmentation of soils by increasing microbial richness: missing links. Environ Microbiol 3(10):649–657. doi:10.1046/j.1462-2920.2001.00236.x

    Article  CAS  Google Scholar 

  17. EPA (2004) How To Evaluate Alternative Cleanup Technologies for Underground Storage Tank Sites: A Guide for Corrective Action Plan Reviewers (EPA 510-R-04-002). U.S. Environmental Protection Agency (EPA), Washington, DC

    Google Scholar 

  18. EPA (2006) Engineering Forum Issue Paper — In Situ Treatment Technologies for Contaminated Soil. US Environmental Protection Agency

  19. Evans MS, Muir D, Lockhart WL, Stern G, Ryan M, Roach P (2005) Persistent organic pollutants and metals in the freshwater biota of the Canadian Subarctic and Arctic: an overview. Sci Total Environ 351:94–147

    Article  Google Scholar 

  20. Evdokimova G, Masloboev V, Mozgova N, Myazin V, Fokina N (2012) Bioremediation of oil-polluted cultivated soils in the Euro-Arctic Region. J Environ Sci Eng 1(9A):1130–1136

    CAS  Google Scholar 

  21. Fernández-Luqueño F, Valenzuela-Encinas C, Marsch R, Martínez-Suárez C, Vázquez-Núñez E, Dendooven L (2011) Microbial communities to mitigate contamination of PAHs in soil—possibilities and challenges: a review. Environ Sci Pollut Res 18(1):12–30. doi:10.1007/s11356-010-0371-6

    Article  Google Scholar 

  22. Filler D, Reynolds C, Snape I, Daugulis A, Barnes D, Williams P (2006) Advances in engineered remediation for use in the Arctic and Antarctica. Polar Rec 42(221):111–120. doi:10.1017/S003224740500505X

    Article  Google Scholar 

  23. Filler DM, Barnes DL, Johnson RA, Snape I (2008) Chapter 10 — Thermally enhanced bioremediation and integrated systems. In: Filler DM, Snape I, Barnes DL (eds) Bioremediation of petroleum hydrocarbons in cold regions. Cambridge University Press, Cambridge

    Google Scholar 

  24. Filler DM, Lindstrom JE, Braddock JF, Johnson RA, Nickalaski R (2001) Integral biopile components for successful bioremediation in the Arctic. Cold Reg Sci Technol 32(2):143–156. doi:10.1016/S0165-232X(01)00020-9

    Article  Google Scholar 

  25. Fingas M (2011) Chapter 8 — Introduction to spill modeling. In: Mervin F (ed) Oil spill science and technology. Gulf Professional Publishing, Boston, pp 187–200. doi:10.1016/B978-1-85617-943-0.10008-5

    Google Scholar 

  26. Finnerty WR (1994) Biosurfactants in environmental biotechnology. Curr Opin Biotechnol 5(3):291–295. doi:10.1016/0958-1669(94)90031-0

    Article  CAS  Google Scholar 

  27. Franzetti A, Di Gennaro P, Bestetti G, Lasagni M, Pitea D, Collina E (2008) Selection of surfactants for enhancing diesel hydrocarbons-contaminated media bioremediation. J Hazard Mater 152(3):1309–1316

    Article  CAS  Google Scholar 

  28. Glossop M, Ioannides A, Gould J (2000) Review of hazard identification techniques. Health and Safety Laboratory, Sheffield

    Google Scholar 

  29. Government of Canada (1994) Polycyclic aromatic hydrocarbons. Government of Canada, Environment Canda, Otawa

    Google Scholar 

  30. Greenwood PF, Wibrow S, George SJ, Tibbett M (2009) Hydrocarbon biodegradation and soil microbial community response to repeated oil exposure. Org Geochem 40(3):293–300. doi:10.1016/j.orggeochem.2008.12.009

    Article  CAS  Google Scholar 

  31. Grommen R, Verstraete W (2002) Environmental biotechnology: the ongoing quest. J Biotechnol 98(1):113–123. doi:10.1016/S0168-1656(02)00090-1

    Article  CAS  Google Scholar 

  32. Hodges DA, Simmers RJ (2006) Bioremediation of crude oil spills: a non-technical field guide. Ohio Department of Natural Resources

  33. IARC (1989) Occupational Exposures in Petroleum Refining; Crude Oil and Major Petroleum Fuels, vol 45. Monographs on the Evaluation of Carcinogenic Risks to Humans. International Agency for Research on Cancer (lARC)

  34. IEC 60050–191 (1990) International Electrotechnical Vocabulary (IEV) — Chapter 191: Dependability and Quality of Service. International Electrotechnical Commission, Geneva

    Google Scholar 

  35. ISO (2009) ISO 31000: Risk management — principles and guidelines. ISO, Geneva

    Google Scholar 

  36. Johnson TA, Sims GK, Ellsworth TR, Ballance AR (1999) Effects of moisture and sorption on bioavailability of p-hydroxybenzoic acid to Arthrobacter sp. in soil. Microbiol Res 153(4):349–353. doi:10.1016/S0944-5013(99)80049-4

    Article  CAS  Google Scholar 

  37. Joo HS, Ndegwa PM, Shoda M, Phae CG (2008) Bioremediation of oil-contaminated soil using Candida catenulata and food waste. Environ Pollut 156(3):891–896. doi:10.1016/j.envpol.2008.05.026

    Article  CAS  Google Scholar 

  38. Kavianian HR, Rao J, Brown G (1992) Application of hazard evaluation techniques to the design of potentially hazardous industrial chemical processes. US Department of Health and Human Services, Public Health Service, Centers for Disease Control, National Institute for Occupatonal Safety and Health, Division of Training and Manpower Development

  39. Kulkarni S, Palande A, Deshpande M (2012) Bioremediation of petroleum hydrocarbons in soils. In: Satyanarayana T, Johri BN (eds) Microorganisms in environmental management. Springer, pp 589–606. doi:10.1007/978-94-007-2229-3_26

  40. Liu X, Sun J, Mao G, Dai C, Li C, Zhu Q, Li Y (2006) Advances on bioremediation of oil-contaminated soil in cold region. Chin J Geochem 25:96–97. doi:10.1007/BF02839923

    Article  Google Scholar 

  41. Lombi E, Hamon RE (2005) Remediation of Polluted Soils. In: Hillel D (ed) Encyclopedia of soils in the environment. Elsevier, pp 379–385. doi:10.1016/B0-12-348530-4/00087-4

  42. Lors C, Damidot D, Ponge J-F, Périé F (2012) Comparison of a bioremediation process of PAHs in a PAH-contaminated soil at field and laboratory scales. Environ Pollut 165:11–17. doi:10.1016/j.envpol.2012.02.004

    Article  CAS  Google Scholar 

  43. Lors C, Ryngaert A, Périé F, Ludo Diels L, Damidot D (2010) Evolution of bacterial community during bioremediation of PAHs in a coal tar contaminated soil. Chemosphere 81:1263–1271

    Article  CAS  Google Scholar 

  44. Mannan S (2012) Chapter 8 — Hazard identification. In: Mannan S (ed) Lees' loss prevention in the process industries, 4th ed. Butterworth-Heinemann, Oxford, pp 204–283. doi:10.1016/B978-0-12-397189-0.00008-2

  45. Margesin R (2000) Potential of cold-adapted microorganisms for bioremediation of oil-polluted Alpine soils. Int Biodeterior Biodegradation 46(1):3–10. doi:10.1016/S0964-8305(00)00049-4

    Article  CAS  Google Scholar 

  46. Margesin R (2014) Bioremediation and biodegradation of hydrocarbons by cold-adapted yeasts. In: Buzzini P, Margesin R (eds) Cold-adapted yeasts. Springer, pp 465–480. doi:10.1007/978-3-642-39681-6_21

  47. Margesin R, Schinner F (1999) Biological decontamination of oil spills in cold environments. J Chem Technol Biotechnol 74(5):381–389. doi:10.1002/(SICI)1097-4660(199905)74:5<381::AID-JCTB59>3.0.CO;2-0

    Article  CAS  Google Scholar 

  48. Margesin R, Schinner F (2001) Biodegradation and bioremediation of hydrocarbons in extreme environments. Appl Microbiol Biotechnol 56(5–6):650–663. doi:10.1007/s002530100701

    Article  CAS  Google Scholar 

  49. Masloboev V, Evdokimova G (2012) Bioremediation of oil product contaminated soils in conditions of North Near-Polar Area. Proc MSTU 15(2):357–360

    Google Scholar 

  50. McCain WD (1990) The properties of petroleum fluids. PennWell Books, Tulsa

    Google Scholar 

  51. McCarthy K, Walker L, Vigoren L, Bartel J (2004) Remediation of spilled petroleum hydrocarbons by in situ landfarming at an arctic site. Cold Reg Sci Technol 40(1):31–39. doi:10.1016/j.coldregions.2004.05.001

    Article  Google Scholar 

  52. Mohn WW, Stewart GR (2000) Limiting factors for hydrocarbon biodegradation at low temperature in Arctic soils. Soil Biol Biochem 32(8):1161–1172. doi:10.1016/S0038-0717(00)00032-8

    Article  CAS  Google Scholar 

  53. Mrozik A, Piotrowaska-Seget Z, Labuzek S (2003) Bacterial degradation and bioremediation of polycyclic aromatic hydrocarbons. Pol J Environ Stud 12(1):15–25

    CAS  Google Scholar 

  54. NORSOK (2010) NORSOK Standard Z-013 — Risk and emergency preparedness assessment. Standards Norway (NORSOK), Lysaker

    Google Scholar 

  55. Paudyn K, Rutter A, Kerry Rowe R, Poland JS (2008) Remediation of hydrocarbon contaminated soils in the Canadian Arctic by landfarming. Cold Reg Sci Technol 53(1):102–114. doi:10.1016/j.coldregions.2007.07.006

    Article  Google Scholar 

  56. Pelletier E, Delille D, Delille B (2004) Crude oil bioremediation in sub-Antarctic intertidal sediments: chemistry and toxicity of oiled residues. Mar Environ Res 57(4):311–327. doi:10.1016/j.marenvres.2003.07.001

    Article  CAS  Google Scholar 

  57. Prince RC, Owens EH, Sergy GA (2002) Weathering of an Arctic oil spill over 20 years: the BIOS experiment revisited. Mar Pollut Bull 44(11):1236–1242. doi:10.1016/S0025-326X(02)00214-X

    Article  CAS  Google Scholar 

  58. Reddy RN (2010) Soil engineering: testing, design, and remediation. Global Media, Delhi

    Google Scholar 

  59. Rike A, Børresen M, Instanes A (2001) Response of cold-adapted microbial populations in a permafrost profile to hydrocarbon contaminants. Polar Rec 37(202):239–248. doi:10.1017/S0032247400027261

    Article  Google Scholar 

  60. Sainsbury D, Singleton P (2006) Dictionary of microbiology and molecular biology, 3rd edn. John Wiley & Sons, Chichester

    Google Scholar 

  61. Sanscartier D, Zeeb B, Koch I, Reimer K (2009) Bioremediation of diesel-contaminated soil by heated and humidified biopile system in cold climates. Cold Reg Sci Technol 55(1):167–173. doi:10.1016/j.coldregions.2008.07.004

    Article  Google Scholar 

  62. Semple KT, Reid BJ, Fermor TR (2001) Impact of composting strategies on the treatment of soils contaminated with organic pollutants. Environ Pollut 112(2):269–283. doi:10.1016/S0269-7491(00)00099-3

    Article  CAS  Google Scholar 

  63. Seo Y, Lee W-H, Sorial G, Bishop PL (2009) The application of a mulch biofilm barrier for surfactant enhanced polycyclic aromatic hydrocarbon bioremediation. Environ Pollut 157(1):95–101. doi:10.1016/j.envpol.2008.07.022

    Article  CAS  Google Scholar 

  64. Singh A, Kuhad RC, Ward OP (2009) Chapter 1 — Biological remediation of soil: an overview of global market and available technologies. In: Singh A, Kuhad RC, Ward OP (eds) Advances in applied bioremediation. vol 17. Springer. doi:10.1007/978-3-540-89621-0_1

  65. Singh A, Ward OP, Kuhad RC (2005) Feasibility studies for microbial remediation hydrocarbon-contaminated soil. In: Margesin R, Schinner F (eds) Manual for soil analysis – monitoring and assessing soil bioremediation. Springer

  66. Sood N, Patle S, Lal B (2010) Bioremediation of acidic oily sludge-contaminated soil by the novel yeast strain Candida digboiensis TERI ASN6. Environ Sci Pollut Res 17(3):603–610. doi:10.1007/s11356-009-0239-9

    Article  CAS  Google Scholar 

  67. Speight JG (2011) Handbook of industrial hydrocarbon processes. Elsevier. doi:10.1016/B978-0-7506-8632-7.10020-9

  68. Speight JG, Arjoon KK (2012) Bioremediation of petroleum and petroleum products. John Wiley & Sons

  69. Suthersan S (1999) In situ bioremediation. Remediation engineering: desing concepts. Ed Suthan S Suthersan. Boca Raton, FL: CRC: Press LLC

  70. Sutton I (2010) Chapter 3 — Hazards identification. In: Sutton I (ed) Process risk and reliability Management. William Andrew Publishing, Oxford, pp 79–190. doi:10.1016/B978-1-4377-7805-2.10003-1

    Google Scholar 

  71. U.S. Army Corps of Engineers (1999) Engineering and design — lubricants and hydraulic fluids — Manual EM 1110-2-1424. U.S. Army Corps of Engineers, Washington DC

    Google Scholar 

  72. Van Hamme JD, Urban J (2009) Biosurfactants in bioremediation. In: Kuhad RC, Ward OP (eds) Singh A. Advances in applied bioremediation, Springer, pp 73–89

    Google Scholar 

  73. Vidali M (2001) Bioremediation. An Overview Pure Appl Chem 73(7):1163–1172

    Article  CAS  Google Scholar 

  74. Vogel TM (1996) Bioaugmentation as a soil bioremediation approach. Curr Opin Biotechnol 7(3):311–316

    Article  CAS  Google Scholar 

  75. Walworth J, Braddock J, Woolard C (2001) Nutrient and temperature interactions in bioremediation of cryic soils. Cold Reg Sci Technol 32(2–3):85–91. doi:10.1016/S0165-232X(00)00020-3

    Article  Google Scholar 

  76. Walworth J, Pond A, Snape I, Rayner J, Ferguson S, Harvey P (2007) Nitrogen requirements for maximizing petroleum bioremediation in a sub-Antarctic soil. Cold Reg Sci Technol 48(2):84–91. doi:10.1016/j.coldregions.2006.07.001

    Article  Google Scholar 

  77. Walworth JL, Reynolds CM, Rutter A, Snape I (2008) Chapter 9 — Landfarming. In: Filler DM, Snape I, Barnes DL (eds) Bioremediation of petroleum hydrocarbons in cold regions. Cambridge University Press, Cambridge

    Google Scholar 

  78. Wania F (1999) On the origin of elevated levels of persistent chemicals in the environment. Environ Sci Pollut Res 6(1):11–19

    Article  CAS  Google Scholar 

  79. Whyte LG, Bourbonnière L, Bellerose C, Greer CW (1999) Bioremediation assessment of hydrocarbon-contaminated soils from the high Arctic. Bioremediation J 3(1):69–80. doi:10.1080/10889869991219217

    Article  CAS  Google Scholar 

  80. Whyte LG, Hawari J, Zhou E, Bourbonnière L, Inniss WE, Greer CW (1998) Biodegradation of variable-chain-length alkanes at low temperatures by a psychrotrophic Rhodococcus sp. Appl Environ Microbiol 64(7):2578–2584

    CAS  Google Scholar 

  81. WWF (2007) Oil spill responce challenges in the Arctic. WWF International Arctic Programme, Oslo

    Google Scholar 

  82. Yang S-Z, Jin H-J, Wei Z, He R-X, Ji Y-J, Li X-M, Yu S-P (2009) Bioremediation of oil spills in cold environments: a review. Pedosphere 19(3):371–381

    Article  CAS  Google Scholar 

  83. Zheng Z, Obbard JP (2001) Effect of non‐ionic surfactants on elimination of polycyclic aromatic hydrocarbons (PAHs) in soil‐slurry by Phanerochaete chrysosporium. J Chem Technol Biotechnol 76(4):423–429. doi:10.1002/jctb.396

    Article  CAS  Google Scholar 

  84. Zoller U, Reznik A (2006) In-situ surfactant/surfactant-nutrient mix-enhanced bioremediation of NAPL (fuel)-contaminated sandy soil aquifers. Environ Sci Pollut Res 13(6):392–397

    Article  CAS  Google Scholar 

  85. Zytner R, Salb A, Brook T, Leunissen M, Stiver W (2001) Bioremediation of diesel fuel contaminated soil. Can J Civil Eng 28(S1):131–140

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Masoud Naseri.

Additional information

Responsible editor: Ester Heath

Appendix

Appendix

Complete list of hazards, divided in five categories as well as their effects on the system and the mechanisms through which those effects are expected are presented in Table A2. The rightmost column suggests a number of preventive/corrective measures, by which the corresponding hazards can be tackled and mitigated accordingly.

Table 2 Preliminary hazard analysis for the biodegradation process in contaminated Arctic soils

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Naseri, M., Barabadi, A. & Barabady, J. Bioremediation treatment of hydrocarbon-contaminated Arctic soils: influencing parameters. Environ Sci Pollut Res 21, 11250–11265 (2014). https://doi.org/10.1007/s11356-014-3122-2

Download citation

Keywords

  • Bioremediation
  • Biodegradation
  • Hydrocarbon
  • Arctic soil
  • Preliminary hazard analysis