Advertisement

Environmental Science and Pollution Research

, Volume 21, Issue 19, pp 11250–11265 | Cite as

Bioremediation treatment of hydrocarbon-contaminated Arctic soils: influencing parameters

  • Masoud Naseri
  • Abbas Barabadi
  • Javad Barabady
Review Article

Abstract

The Arctic environment is very vulnerable and sensitive to hydrocarbon pollutants. Soil bioremediation is attracting interest as a promising and cost-effective clean-up and soil decontamination technology in the Arctic regions. However, remoteness, lack of appropriate infrastructure, the harsh climatic conditions in the Arctic and some physical and chemical properties of Arctic soils may reduce the performance and limit the application of this technology. Therefore, understanding the weaknesses and bottlenecks in the treatment plans, identifying their associated hazards, and providing precautionary measures are essential to improve the overall efficiency and performance of a bioremediation strategy. The aim of this paper is to review the bioremediation techniques and strategies using microorganisms for treatment of hydrocarbon-contaminated Arctic soils. It takes account of Arctic operational conditions and discusses the factors influencing the performance of a bioremediation treatment plan. Preliminary hazard analysis is used as a technique to identify and assess the hazards that threaten the reliability and maintainability of a bioremediation treatment technology. Some key parameters with regard to the feasibility of the suggested preventive/corrective measures are described as well.

Keywords

Bioremediation Biodegradation Hydrocarbon Arctic soil Preliminary hazard analysis 

References

  1. Allen MR (1999) Bioremediation of hydrocarbon contaminated Arctic soils. Royal Military College of CanadaGoogle Scholar
  2. AMAP (1998) AMAP assessment report: Arctic pollution issues. Arctic Monitoring and Assessment Program (AMAP), OsloGoogle Scholar
  3. Anjum R, Rahman M, Masood F, Malik A (2012) Bioremediation of pesticides from soil and wastewater. In: Environmental protection strategies for sustainable development. Springer, pp 295–328Google Scholar
  4. Antizar-Ladislao B, Lopez-Real J, Beck AJ (2006) Bioremediation of polycyclic aromatic hydrocarbons (PAH) in an aged coal-tar-contaminated soil using different in-vessel composting approaches. J Hazard Mater 137(3):1583–1588. doi: 10.1016/j.jhazmat.2006.04.056 CrossRefGoogle Scholar
  5. Atlas RM (1981) Microbial degradation of petroleum hydrocarbons: an environmental perspective. Microbiol Rev 45(1):180–209Google Scholar
  6. Balba M, Al-Awadhi N, Al-Daher R (1998) Bioremediation of oil-contaminated soil: microbiological methods for feasibility assessment and field evaluation. J Microbiol Methods 32(2):155–164. doi: 10.1016/S0167-7012(98)00020-7 CrossRefGoogle Scholar
  7. Bhandari A, Surampalli RY, Champagne P, Ong SK, Tyagi RD, Lo IMC (2007) Remediation technologies for soils and groundwater. American Society of Civil Engineers. Reston, USACrossRefGoogle Scholar
  8. Braddock JF, Lindstrom JE, Prince RC (2003) Weathering of a subarctic oil spill over 25 years: the Caribou–Poker Creeks Research Watershed experiment. Cold Reg Sci Technol 36(1–3):11–23. doi: 10.1016/S0165-232X(02)00076-9 CrossRefGoogle Scholar
  9. Braddock JF, McCarthy KA (1996) Hydrologic and microbiological factors affecting persistence and migration of petroleum hydrocarbons spilled in a continuous-permafrost region. Environ Sci Technol 30(8):2626–2633CrossRefGoogle Scholar
  10. Børresen M, Rike A (2007) Effects of nutrient content, moisture content and salinity on mineralization of hexadecane in an Arctic soil. Cold Reg Sci Technol 48(2):129–138. doi: 10.1016/j.coldregions.2006.10.006 CrossRefGoogle Scholar
  11. Chang Z-Z, Weaver RW (1998) Organic bulking agents for enhancing oil bioremediation in soil. Bioremediat J 1(3):173–180CrossRefGoogle Scholar
  12. Chemlal R, Tassist A, Drouiche M, Lounici H, Drouiche N, Mameri N (2012) Microbiological aspects study of bioremediation of diesel-contaminated soils by biopile technique. Int Biodeterior Biodegradation 75(0):201–206. doi: 10.1016/j.ibiod.2012.09.011 CrossRefGoogle Scholar
  13. Cheremisinoff NP, Rosenfeld P (2009) Chapter 4 — Exxon Valdez oil spill. In: Cheremisinoff NP, Rosenfeld P (eds) Handbook of pollution prevention and cleaner production — best practices in the petroleum industry. William Andrew Publishing, Oxford, pp 113–119. doi: 10.1016/B978-0-8155-2035-1.10004-1 CrossRefGoogle Scholar
  14. Colla TS, Andreazza R, Bücker F, de Souza MM, Tramontini L, Prado GR, Frazzon APG, de Oliveira Camargo FA, Bento FM (2013) Bioremediation assessment of diesel–biodiesel-contaminated soil using an alternative bioaugmentation strategy. Environ Sci Pollut Res: 1–11. doi: 10.1007/s11356-013-2139-2
  15. Couto N, Fritt-Rasmussen J, Jensen PE, Højrup M, Rodrigo AP, Ribeiro AB (2014) Suitability of oil bioremediation in an Artic soil using surplus heating from an incineration facility. Environ Sci Pollut Res. doi: 10.1007/s11356-013-2466-3 Google Scholar
  16. Dejonghe W, Boon N, Seghers D, Top EM, Verstraete W (2001) Bioaugmentation of soils by increasing microbial richness: missing links. Environ Microbiol 3(10):649–657. doi: 10.1046/j.1462-2920.2001.00236.x CrossRefGoogle Scholar
  17. EPA (2004) How To Evaluate Alternative Cleanup Technologies for Underground Storage Tank Sites: A Guide for Corrective Action Plan Reviewers (EPA 510-R-04-002). U.S. Environmental Protection Agency (EPA), Washington, DCGoogle Scholar
  18. EPA (2006) Engineering Forum Issue Paper — In Situ Treatment Technologies for Contaminated Soil. US Environmental Protection AgencyGoogle Scholar
  19. Evans MS, Muir D, Lockhart WL, Stern G, Ryan M, Roach P (2005) Persistent organic pollutants and metals in the freshwater biota of the Canadian Subarctic and Arctic: an overview. Sci Total Environ 351:94–147CrossRefGoogle Scholar
  20. Evdokimova G, Masloboev V, Mozgova N, Myazin V, Fokina N (2012) Bioremediation of oil-polluted cultivated soils in the Euro-Arctic Region. J Environ Sci Eng 1(9A):1130–1136Google Scholar
  21. Fernández-Luqueño F, Valenzuela-Encinas C, Marsch R, Martínez-Suárez C, Vázquez-Núñez E, Dendooven L (2011) Microbial communities to mitigate contamination of PAHs in soil—possibilities and challenges: a review. Environ Sci Pollut Res 18(1):12–30. doi: 10.1007/s11356-010-0371-6 CrossRefGoogle Scholar
  22. Filler D, Reynolds C, Snape I, Daugulis A, Barnes D, Williams P (2006) Advances in engineered remediation for use in the Arctic and Antarctica. Polar Rec 42(221):111–120. doi: 10.1017/S003224740500505X CrossRefGoogle Scholar
  23. Filler DM, Barnes DL, Johnson RA, Snape I (2008) Chapter 10 — Thermally enhanced bioremediation and integrated systems. In: Filler DM, Snape I, Barnes DL (eds) Bioremediation of petroleum hydrocarbons in cold regions. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  24. Filler DM, Lindstrom JE, Braddock JF, Johnson RA, Nickalaski R (2001) Integral biopile components for successful bioremediation in the Arctic. Cold Reg Sci Technol 32(2):143–156. doi: 10.1016/S0165-232X(01)00020-9 CrossRefGoogle Scholar
  25. Fingas M (2011) Chapter 8 — Introduction to spill modeling. In: Mervin F (ed) Oil spill science and technology. Gulf Professional Publishing, Boston, pp 187–200. doi: 10.1016/B978-1-85617-943-0.10008-5 CrossRefGoogle Scholar
  26. Finnerty WR (1994) Biosurfactants in environmental biotechnology. Curr Opin Biotechnol 5(3):291–295. doi: 10.1016/0958-1669(94)90031-0 CrossRefGoogle Scholar
  27. Franzetti A, Di Gennaro P, Bestetti G, Lasagni M, Pitea D, Collina E (2008) Selection of surfactants for enhancing diesel hydrocarbons-contaminated media bioremediation. J Hazard Mater 152(3):1309–1316CrossRefGoogle Scholar
  28. Glossop M, Ioannides A, Gould J (2000) Review of hazard identification techniques. Health and Safety Laboratory, SheffieldGoogle Scholar
  29. Government of Canada (1994) Polycyclic aromatic hydrocarbons. Government of Canada, Environment Canda, OtawaGoogle Scholar
  30. Greenwood PF, Wibrow S, George SJ, Tibbett M (2009) Hydrocarbon biodegradation and soil microbial community response to repeated oil exposure. Org Geochem 40(3):293–300. doi: 10.1016/j.orggeochem.2008.12.009 CrossRefGoogle Scholar
  31. Grommen R, Verstraete W (2002) Environmental biotechnology: the ongoing quest. J Biotechnol 98(1):113–123. doi: 10.1016/S0168-1656(02)00090-1 CrossRefGoogle Scholar
  32. Hodges DA, Simmers RJ (2006) Bioremediation of crude oil spills: a non-technical field guide. Ohio Department of Natural ResourcesGoogle Scholar
  33. IARC (1989) Occupational Exposures in Petroleum Refining; Crude Oil and Major Petroleum Fuels, vol 45. Monographs on the Evaluation of Carcinogenic Risks to Humans. International Agency for Research on Cancer (lARC)Google Scholar
  34. IEC 60050–191 (1990) International Electrotechnical Vocabulary (IEV) — Chapter 191: Dependability and Quality of Service. International Electrotechnical Commission, GenevaGoogle Scholar
  35. ISO (2009) ISO 31000: Risk management — principles and guidelines. ISO, GenevaGoogle Scholar
  36. Johnson TA, Sims GK, Ellsworth TR, Ballance AR (1999) Effects of moisture and sorption on bioavailability of p-hydroxybenzoic acid to Arthrobacter sp. in soil. Microbiol Res 153(4):349–353. doi: 10.1016/S0944-5013(99)80049-4 CrossRefGoogle Scholar
  37. Joo HS, Ndegwa PM, Shoda M, Phae CG (2008) Bioremediation of oil-contaminated soil using Candida catenulata and food waste. Environ Pollut 156(3):891–896. doi: 10.1016/j.envpol.2008.05.026 CrossRefGoogle Scholar
  38. Kavianian HR, Rao J, Brown G (1992) Application of hazard evaluation techniques to the design of potentially hazardous industrial chemical processes. US Department of Health and Human Services, Public Health Service, Centers for Disease Control, National Institute for Occupatonal Safety and Health, Division of Training and Manpower DevelopmentGoogle Scholar
  39. Kulkarni S, Palande A, Deshpande M (2012) Bioremediation of petroleum hydrocarbons in soils. In: Satyanarayana T, Johri BN (eds) Microorganisms in environmental management. Springer, pp 589–606. doi: 10.1007/978-94-007-2229-3_26
  40. Liu X, Sun J, Mao G, Dai C, Li C, Zhu Q, Li Y (2006) Advances on bioremediation of oil-contaminated soil in cold region. Chin J Geochem 25:96–97. doi: 10.1007/BF02839923 CrossRefGoogle Scholar
  41. Lombi E, Hamon RE (2005) Remediation of Polluted Soils. In: Hillel D (ed) Encyclopedia of soils in the environment. Elsevier, pp 379–385. doi: 10.1016/B0-12-348530-4/00087-4
  42. Lors C, Damidot D, Ponge J-F, Périé F (2012) Comparison of a bioremediation process of PAHs in a PAH-contaminated soil at field and laboratory scales. Environ Pollut 165:11–17. doi: 10.1016/j.envpol.2012.02.004 CrossRefGoogle Scholar
  43. Lors C, Ryngaert A, Périé F, Ludo Diels L, Damidot D (2010) Evolution of bacterial community during bioremediation of PAHs in a coal tar contaminated soil. Chemosphere 81:1263–1271CrossRefGoogle Scholar
  44. Mannan S (2012) Chapter 8 — Hazard identification. In: Mannan S (ed) Lees' loss prevention in the process industries, 4th ed. Butterworth-Heinemann, Oxford, pp 204–283. doi: 10.1016/B978-0-12-397189-0.00008-2
  45. Margesin R (2000) Potential of cold-adapted microorganisms for bioremediation of oil-polluted Alpine soils. Int Biodeterior Biodegradation 46(1):3–10. doi: 10.1016/S0964-8305(00)00049-4 CrossRefGoogle Scholar
  46. Margesin R (2014) Bioremediation and biodegradation of hydrocarbons by cold-adapted yeasts. In: Buzzini P, Margesin R (eds) Cold-adapted yeasts. Springer, pp 465–480. doi: 10.1007/978-3-642-39681-6_21
  47. Margesin R, Schinner F (1999) Biological decontamination of oil spills in cold environments. J Chem Technol Biotechnol 74(5):381–389. doi: 10.1002/(SICI)1097-4660(199905)74:5<381::AID-JCTB59>3.0.CO;2-0 CrossRefGoogle Scholar
  48. Margesin R, Schinner F (2001) Biodegradation and bioremediation of hydrocarbons in extreme environments. Appl Microbiol Biotechnol 56(5–6):650–663. doi: 10.1007/s002530100701 CrossRefGoogle Scholar
  49. Masloboev V, Evdokimova G (2012) Bioremediation of oil product contaminated soils in conditions of North Near-Polar Area. Proc MSTU 15(2):357–360Google Scholar
  50. McCain WD (1990) The properties of petroleum fluids. PennWell Books, TulsaGoogle Scholar
  51. McCarthy K, Walker L, Vigoren L, Bartel J (2004) Remediation of spilled petroleum hydrocarbons by in situ landfarming at an arctic site. Cold Reg Sci Technol 40(1):31–39. doi: 10.1016/j.coldregions.2004.05.001 CrossRefGoogle Scholar
  52. Mohn WW, Stewart GR (2000) Limiting factors for hydrocarbon biodegradation at low temperature in Arctic soils. Soil Biol Biochem 32(8):1161–1172. doi: 10.1016/S0038-0717(00)00032-8 CrossRefGoogle Scholar
  53. Mrozik A, Piotrowaska-Seget Z, Labuzek S (2003) Bacterial degradation and bioremediation of polycyclic aromatic hydrocarbons. Pol J Environ Stud 12(1):15–25Google Scholar
  54. NORSOK (2010) NORSOK Standard Z-013 — Risk and emergency preparedness assessment. Standards Norway (NORSOK), LysakerGoogle Scholar
  55. Paudyn K, Rutter A, Kerry Rowe R, Poland JS (2008) Remediation of hydrocarbon contaminated soils in the Canadian Arctic by landfarming. Cold Reg Sci Technol 53(1):102–114. doi: 10.1016/j.coldregions.2007.07.006 CrossRefGoogle Scholar
  56. Pelletier E, Delille D, Delille B (2004) Crude oil bioremediation in sub-Antarctic intertidal sediments: chemistry and toxicity of oiled residues. Mar Environ Res 57(4):311–327. doi: 10.1016/j.marenvres.2003.07.001 CrossRefGoogle Scholar
  57. Prince RC, Owens EH, Sergy GA (2002) Weathering of an Arctic oil spill over 20 years: the BIOS experiment revisited. Mar Pollut Bull 44(11):1236–1242. doi: 10.1016/S0025-326X(02)00214-X CrossRefGoogle Scholar
  58. Reddy RN (2010) Soil engineering: testing, design, and remediation. Global Media, DelhiGoogle Scholar
  59. Rike A, Børresen M, Instanes A (2001) Response of cold-adapted microbial populations in a permafrost profile to hydrocarbon contaminants. Polar Rec 37(202):239–248. doi: 10.1017/S0032247400027261 CrossRefGoogle Scholar
  60. Sainsbury D, Singleton P (2006) Dictionary of microbiology and molecular biology, 3rd edn. John Wiley & Sons, ChichesterGoogle Scholar
  61. Sanscartier D, Zeeb B, Koch I, Reimer K (2009) Bioremediation of diesel-contaminated soil by heated and humidified biopile system in cold climates. Cold Reg Sci Technol 55(1):167–173. doi: 10.1016/j.coldregions.2008.07.004 CrossRefGoogle Scholar
  62. Semple KT, Reid BJ, Fermor TR (2001) Impact of composting strategies on the treatment of soils contaminated with organic pollutants. Environ Pollut 112(2):269–283. doi: 10.1016/S0269-7491(00)00099-3 CrossRefGoogle Scholar
  63. Seo Y, Lee W-H, Sorial G, Bishop PL (2009) The application of a mulch biofilm barrier for surfactant enhanced polycyclic aromatic hydrocarbon bioremediation. Environ Pollut 157(1):95–101. doi: 10.1016/j.envpol.2008.07.022 CrossRefGoogle Scholar
  64. Singh A, Kuhad RC, Ward OP (2009) Chapter 1 — Biological remediation of soil: an overview of global market and available technologies. In: Singh A, Kuhad RC, Ward OP (eds) Advances in applied bioremediation. vol 17. Springer. doi: 10.1007/978-3-540-89621-0_1
  65. Singh A, Ward OP, Kuhad RC (2005) Feasibility studies for microbial remediation hydrocarbon-contaminated soil. In: Margesin R, Schinner F (eds) Manual for soil analysis – monitoring and assessing soil bioremediation. SpringerGoogle Scholar
  66. Sood N, Patle S, Lal B (2010) Bioremediation of acidic oily sludge-contaminated soil by the novel yeast strain Candida digboiensis TERI ASN6. Environ Sci Pollut Res 17(3):603–610. doi: 10.1007/s11356-009-0239-9 CrossRefGoogle Scholar
  67. Speight JG (2011) Handbook of industrial hydrocarbon processes. Elsevier. doi: 10.1016/B978-0-7506-8632-7.10020-9
  68. Speight JG, Arjoon KK (2012) Bioremediation of petroleum and petroleum products. John Wiley & SonsGoogle Scholar
  69. Suthersan S (1999) In situ bioremediation. Remediation engineering: desing concepts. Ed Suthan S Suthersan. Boca Raton, FL: CRC: Press LLCGoogle Scholar
  70. Sutton I (2010) Chapter 3 — Hazards identification. In: Sutton I (ed) Process risk and reliability Management. William Andrew Publishing, Oxford, pp 79–190. doi: 10.1016/B978-1-4377-7805-2.10003-1 CrossRefGoogle Scholar
  71. U.S. Army Corps of Engineers (1999) Engineering and design — lubricants and hydraulic fluids — Manual EM 1110-2-1424. U.S. Army Corps of Engineers, Washington DCGoogle Scholar
  72. Van Hamme JD, Urban J (2009) Biosurfactants in bioremediation. In: Kuhad RC, Ward OP (eds) Singh A. Advances in applied bioremediation, Springer, pp 73–89Google Scholar
  73. Vidali M (2001) Bioremediation. An Overview Pure Appl Chem 73(7):1163–1172CrossRefGoogle Scholar
  74. Vogel TM (1996) Bioaugmentation as a soil bioremediation approach. Curr Opin Biotechnol 7(3):311–316CrossRefGoogle Scholar
  75. Walworth J, Braddock J, Woolard C (2001) Nutrient and temperature interactions in bioremediation of cryic soils. Cold Reg Sci Technol 32(2–3):85–91. doi: 10.1016/S0165-232X(00)00020-3 CrossRefGoogle Scholar
  76. Walworth J, Pond A, Snape I, Rayner J, Ferguson S, Harvey P (2007) Nitrogen requirements for maximizing petroleum bioremediation in a sub-Antarctic soil. Cold Reg Sci Technol 48(2):84–91. doi: 10.1016/j.coldregions.2006.07.001 CrossRefGoogle Scholar
  77. Walworth JL, Reynolds CM, Rutter A, Snape I (2008) Chapter 9 — Landfarming. In: Filler DM, Snape I, Barnes DL (eds) Bioremediation of petroleum hydrocarbons in cold regions. Cambridge University Press, CambridgeGoogle Scholar
  78. Wania F (1999) On the origin of elevated levels of persistent chemicals in the environment. Environ Sci Pollut Res 6(1):11–19CrossRefGoogle Scholar
  79. Whyte LG, Bourbonnière L, Bellerose C, Greer CW (1999) Bioremediation assessment of hydrocarbon-contaminated soils from the high Arctic. Bioremediation J 3(1):69–80. doi: 10.1080/10889869991219217 CrossRefGoogle Scholar
  80. Whyte LG, Hawari J, Zhou E, Bourbonnière L, Inniss WE, Greer CW (1998) Biodegradation of variable-chain-length alkanes at low temperatures by a psychrotrophic Rhodococcus sp. Appl Environ Microbiol 64(7):2578–2584Google Scholar
  81. WWF (2007) Oil spill responce challenges in the Arctic. WWF International Arctic Programme, OsloGoogle Scholar
  82. Yang S-Z, Jin H-J, Wei Z, He R-X, Ji Y-J, Li X-M, Yu S-P (2009) Bioremediation of oil spills in cold environments: a review. Pedosphere 19(3):371–381CrossRefGoogle Scholar
  83. Zheng Z, Obbard JP (2001) Effect of non‐ionic surfactants on elimination of polycyclic aromatic hydrocarbons (PAHs) in soil‐slurry by Phanerochaete chrysosporium. J Chem Technol Biotechnol 76(4):423–429. doi: 10.1002/jctb.396 CrossRefGoogle Scholar
  84. Zoller U, Reznik A (2006) In-situ surfactant/surfactant-nutrient mix-enhanced bioremediation of NAPL (fuel)-contaminated sandy soil aquifers. Environ Sci Pollut Res 13(6):392–397CrossRefGoogle Scholar
  85. Zytner R, Salb A, Brook T, Leunissen M, Stiver W (2001) Bioremediation of diesel fuel contaminated soil. Can J Civil Eng 28(S1):131–140CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Department of Engineering and SafetyUiT the Arctic University of NorwayTromsøNorway

Personalised recommendations