Environmental Science and Pollution Research

, Volume 22, Issue 9, pp 6431–6439 | Cite as

Water and acrylamide monomer transfer rates from a settling basin to groundwaters

  • Stéphane BinetEmail author
  • Kathy Bru
  • Thomas Klinka
  • Solène Touzé
  • Mickael Motelica-Heino
Degradation and transfer of polyacrylamide based floculents in sludges and industrial and natural waters


The aim of this paper was to estimate the potential leakage of acrylamide monomer, used for flocculation in a settling basin, towards the groundwaters. Surface–groundwater interactions were conceptualized with a groundwater transport model, using a transfer rate to describe the clogged properties of the interface. The change in the transfer rate as a function of the spreading of the clogged layer in the settling basin was characterized with respect to time. It is shown that the water and the Acrylamide transfer rate are not controlled by the spreading of the clogged layer until this layer fully covers the interface. When the clogged layer spreads out, the transfer rate remains in the same order of magnitude until the area covered reaches 80 %. The main flux takes place through bank seepage. In these early stage conditions of a working settling basin, the acrylamide flux towards groundwaters remains constant, at close to 10 g/year (±5).


Acrylamide Water transfer rate Clogged layer Groundwater 



This work was funded by the ANR CES project 1443 AquaPOL, Contaminants, Ecosystèmes, Santé 2010. The authors thank the students Lucie MONNIN and Steeven TESSIER from the Geosciences Master’s course at Orléans University for their help during the pumping and tracer tests, the Polytech’Orléans Engineering students Jennifer DEROO and Robin VENAT for their contribution to developing the model and Dr. Elizabeth ROWLEY-JOLIVET for improving the English language.


  1. Binet S, Mudry J, Bertrand C, Guglielmi Y, Cova R (2006) Estimation of quantitative descriptors of northeastern Mediterranean karst behavior: multiparametric study and local validation of the Siou-Blanc massif (Toulon, France). Hydrogeol J 14:1107–1121CrossRefGoogle Scholar
  2. Binet S, Mudry J, Scavia C, Campus S, Bertrand C, Guglielmi Y (2007) In situ characterization of flows in a fractured unstable slope. Geomorphology 86(1):193–203CrossRefGoogle Scholar
  3. Binet S, Gogo S, Laggoun-Défarge F (2013) A water-table dependent reservoir model to investigate the effect of drought and vascular plant invasion on peatland hydrology. J Hydrol 499:132–139CrossRefGoogle Scholar
  4. Brown L, Rhead M (1979) Liquid-chromatographic determination of acrylamide monomer in natural and polluted aqueous environments. Analyst 104:391–399CrossRefGoogle Scholar
  5. Bru K (2014) Amélioration de la compréhension du fonctionnement d'un bassin de décantation, élément essentiel de la gestion des ressources en eau utilisées par l'industrie extractive des granulats. Mines et Carrières 2014:189–19Google Scholar
  6. Chu S, Metcalfe CD (2007) Analysis of acrylamide in water using a coevaporation preparative step and isotope dilution liquid chromatography tandem mass spectrometry. Anal Chem 79:5093–5096CrossRefGoogle Scholar
  7. Croll BT, Arkell GM, Hodge RPJ (1974) Residues of acrylamide in water. Water Res 8:989–993CrossRefGoogle Scholar
  8. Dechesne M, Barraud S, Bardin J-P (2004) Indicators for hydraulic and pollution retention assessment of stormwater infiltration basins. J Environ Manag 71:371–380CrossRefGoogle Scholar
  9. Diersch HJ (2005) Feflow reference manual. WASY GmbH, BerlinGoogle Scholar
  10. Gelhar LW, Welty C, Rehfeldt KR (1992) A critical review of data on field-scale dispersion in aquifers. Water Resour Res 28:1955–1974CrossRefGoogle Scholar
  11. Guezennec AG et al (2014) Degradation and transfer of polyacrylamide based flocculants in the aquatic environment: a review. Environ Sci Pollut Res (this issue)Google Scholar
  12. Gutierrez A, Klinka T, Thiéry D, Buscarlet E, Binet S, Jozja N, Défarge C, Leclerc B, Fecamp C, Ahumada Y, Elsass J (2013) TRAC, a collaborative computer tool for tracer-test interpretation. Eur Phys J 50(3002)Google Scholar
  13. Hantush MS, Jacob CE (1955) Non-steady radial flow in an infinite leaky aquifer. Trans Am Geophys Union 36:95–100CrossRefGoogle Scholar
  14. Kalbus E, Schmidt C, Molson JW, Reinstorf F, Schirmer M (2009) Influence of aquifer and streambed heterogeneity on the distribution of groundwater discharge Hydrol. Earth Syst Sci 13:69–77CrossRefGoogle Scholar
  15. McDonald MG, Harbaugh AW (1988) MODFLOW, packages reference manual. Waterloo Hydrogeologic, WaterlooGoogle Scholar
  16. Mnif I, Hurel C, Guezennec AG, Marmier N (2014) Interaction of polyacrylamide flocculants and acrylamide with clays, soil and sediments. International Conference on Interfaces against Pollution, De HarmonieGoogle Scholar
  17. Muellegger C, Weilhartner A, Battin TJ, Hofmann T (2013) Positive and negative impacts of five Austrian gravel pit lakes on groundwater quality. Sci Total Environ 443(2013):14–23CrossRefGoogle Scholar
  18. Noorishad J, Tsang CF, Perrochet P, Musy A (1992) A perspective on the numerical solution of convection-dominated transport problems: a price to pay for the easy way out. Water Resour Res 28:551–561CrossRefGoogle Scholar
  19. Packman AI, Mackay JS (2003) Interplay of stream-subsurface exchange, clay particle deposition and streambed evolution. Water Resour Res 39:1097Google Scholar
  20. Rosenberry DO, Pitlick J (2009) Effects of sediment transport and seepage direction on hydraulic properties at the sediment–water interface of hyporheic settings. J Hydrol 373:377–391CrossRefGoogle Scholar
  21. Schubert J (2002) Hydraulic aspects of riverbank filtration—field studies. J Hydrol 266:145–161CrossRefGoogle Scholar
  22. Siriwardene NR, Deletic A, Fletcher TD (2007) Clogging of stormwater gravel infiltration systems and filters: Insights from a laboratory study. Water Res 41:1433–1440CrossRefGoogle Scholar
  23. Solution GNSS (2007) GNSS solution software. Version 3.00. 07, Magellan Navigation Company CopyrightGoogle Scholar
  24. Sophocleous M (2002) Interaction between groundwater and surface water: state of science. Hydrogeol J 10:52–67CrossRefGoogle Scholar
  25. Stuart M, Lapworth D, Crane E, Hart A (2012) Review of risk from potential emerging contaminants in UK groundwater. Sci Total Environ 416:1–21CrossRefGoogle Scholar
  26. Touzé S, Guerin V, Togola A, A G, Binet S, Adam Y (2014) Dissemination of acrylamide monomer from polyacrylamide based flocculant use — sand and gravel quarry case study. Environ Sci Pollut Res (this issue)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Stéphane Binet
    • 1
    • 2
    Email author
  • Kathy Bru
    • 3
  • Thomas Klinka
    • 3
  • Solène Touzé
    • 3
  • Mickael Motelica-Heino
    • 2
  1. 1.CNRS; UPS; INP; UMR 5245; Laboratoire Ecologie Fonctionnelle et Environnement (EcoLab)Université de ToulouseCastanet TolosanFrance
  2. 2.CNRS; INSU; UMR 7327; Institut des Sciences de la Terre d’Orléans (ISTO) ; Université d’OrléansBureau de Recherches Géologiques et Minières (BRGM)OrleansFrance
  3. 3.Bureau de Recherches Géologiques et Minières (BRGM)Orleans Cedex 2France

Personalised recommendations