Skip to main content
Log in

Occurrence of 1,1′-dimethyl-4,4′-bipyridinium (Paraquat) in irrigated soil of the Lake Chad Basin, Niger

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Increased use of agrochemical products to improve yields for irrigated crops in sub-Saharan Africa has been accompanied by a significant increase in the risk of environmental contamination. Detailed examples of the fate of pesticides after initial spreading on crop fields are scarce in tropical regions, where safe practices and related health risks are poorly understood by smallholder farmers. In the semi-arid environment of the Lake Chad Basin, SE Niger, both intrinsic properties of pesticides and extrinsic factors such as soil and climate helped to characterize processes leading to an accumulation of pesticides in soils. Analysis by HPLC-UV of a 6 m deep soil profile showed the presence of Paraquat at concentrations from 953 ± 102 μg kg−1 to 3083 ± 175 μg kg−1 at depths between 0.80 and 2.75 m below the land surface. Soil analysis revealed that up to approximately 15 % of the total soil matrix consists of smectites, a clay mineral capable of retaining cationic pesticides such as Paraquat, and a very low content of organic matter (<0.15 wt.% TOC). Paraquat could be stored and not bioavailable in a clayey barrier at approximately 2-m depth and therefore does not represent an immediate risk for populations or environment in this form. However, if the Paraquat application rate remains constant, the clayey barrier could reach a saturation limit within 150–200 years and 180–220 years if we consider a DT50 in soil of ~1,000 days (FAO). Consequently, it could lead to a deeper infiltration and so a pollution of groundwater. Such a scenario can represent a health risk for drinking water and for the Lake Chad, which is a major resource for this densely populated region of semi-arid Africa. Further analyses should focus on deeper layers and groundwater Paraquat contents to validate or invalidate the hypothesis of storage in this clay-rich layer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Akinloye OA, Adamson I, Ademuyiwa O, Arowolo TA (2011) Paraquat toxicity and its mode of action in some commonly consumed vegetables in Abeokuta, Nigeria. Int J Plant Physiol Biochem 3(4):75–82

    CAS  Google Scholar 

  • Anderson JR, Drew EA (1972) Growth characteristics of a species Lipomyces and its degradation of Paraquat. J Gen Microbiol 70:43–58

    Article  CAS  Google Scholar 

  • Arias-Estévez M, López-Periago E, Martínez-Carballo E, Simal-Gándara J, Mejuto JC, García-Río L (2008) The mobility and degradation of pesticides in soils and the pollution of groundwater resources. Agr Ecosyst Environ 123:247–260

    Article  Google Scholar 

  • Awadelkarim KD, Mariani-Constantini R, Elwali NE (2012) Cancer in the Sudan: an overview of the current status of knowledge on tumor patterns and risk factors. Sci Total Environ 423:214–228

    Article  CAS  Google Scholar 

  • Babatunde MM, Oladimeji AA, Balogun JK (2001) Acute toxicity of gramoxone to Oreaochromis niloticus (Trewavas) in Nigeria. Water Air Soil Poll 131:1–10

    Article  CAS  Google Scholar 

  • Baran N, Lepiller M, Mouvet C (2008) Agricultural diffuse pollution in a chalk aquifer (Trois Fontaines, France): influence of pesticide properties and hydrodynamic constraints. J Hydrol 358(1–2):56–69

    Article  Google Scholar 

  • Barbiéro L, Mohamedou AO, Lucien Roger L, Furian S, Aventurier A, Rémy JC et al (2005) The origin of vertisols and their relationship to acid sulfate soils in the Senegal valley. Catena 59:93–116

    Article  Google Scholar 

  • Bassett T (2010) Reducing hunger vulnerability through sustainable development. Proc Natl Acad Sci U S A 107:5697–5698

    Article  CAS  Google Scholar 

  • Bending G, Lincoln S, Edmonson R (2005) Spatial variation in the degradation rate of the pesticides isoproturon, azoxystrobin and diflufenican in soil and its relationship with chemical and microbial properties. Environ Pollut 139(2):279–287

    Article  Google Scholar 

  • Berg H (2002) Rice monoculture and integrated rice-fish farming in the Mekong delta, Vietnam economic and ecological considerations. Ecol Econ 41:95–107

    Article  Google Scholar 

  • Berny PJ, de Buffrénil V, Hémery G (2006) Use of the Nile monitor, Varanus niloticus L (Reptilia: Varanidae), as a bioindicator of organochlorine pollution in African wetlands. B Environ Contam Tox 77:359–366

    Article  CAS  Google Scholar 

  • Berry C, La Vecchia C, Nicotera P (2010) Paraquat and Parkinson’s disease. Cell Death Differ 17:1115–1125

    Article  CAS  Google Scholar 

  • Bolan NS, Baskaran S (1996) Biodegradation of 2,4-D herbicide as affected by its sorption–desorption behavior and microbial activity of soils. Aust J Soil Res 34:1041–1053

    Article  CAS  Google Scholar 

  • Calamari D (1985) Review of the state of aquatic pollution of West and Central African inland waters. FAO-FI-CIFA O P, report No.: 12; 32 p.

  • Ciliberti A, Berny P, Vey D, de Buffrenil V (2012) Assessing environmental contamination around obsolete pesticide stcokpiles in West Africa: using the Nile monitor (Varanus niloticus) as a sentinel species. Environ Toxicol Chem 31:387–394

    Article  CAS  Google Scholar 

  • Constenla MA, Riley D, Kennedy SH, Rojas CE, Mora LE, Stevens JEB (1990) Paraquat behavior in Costa Rican soils and residues in coffee. J Agric Food Chem 38:1985–1988

    Article  CAS  Google Scholar 

  • Court of Justice of the European Union. The court of first instance annuls the directive authorising Paraquat as an active plant protection substance. Judgment of the Court of First Instance in case T-229/04. Kingdom of Sweden Commission of the European Communities. http://curia.europa.eu/en/actu/communiques/cp07/aff/cp070045en.pdf. Assessed 11 July 2007

  • Damanakis M, Drennan DS, Fryer JD, Holly K (1970) The adsorption and mobility of paraquat on different soils and soil constituents. Weed Res 10:264–277

    Article  CAS  Google Scholar 

  • Descalzo RC, Punja ZK, André Lévesque C, Rahe JE (1998) Glyphosate treatment of bean seedlings causes short-term increases in Pythium populations and damping off potential in soils. Appl Soil Ecol 8:25–33

    Article  Google Scholar 

  • Descloitres M, Le Troquer Y, inventors (2004) Sonde de diagraphie électrique pour la mesure de la résistivité sur la paroi d’un forage. French patent Bulletin Officiel de la Propriété Industrielle Report No.: 2845 416; INPI

  • Ecobichon DJ (2001) Pesticide use in developing countries. Toxicology 160:27–33

    Article  CAS  Google Scholar 

  • FAO (2000) La situation mondiale de l'alimentation et de l'agriculture. Enseignements des 50 dernières années. Document de travail de l'économie agricole et du développement, 32, 21p

  • FAO (2003) Pesticide residues in food. Document 057: Paraquat. World Health Organization/Food and Agriculture Organization of the United Nations, Rome, pp 533–697

    Google Scholar 

  • FAO (2005) Food supply situation and crop prospects in sub-Saharan Africa. FAO GIEWS report No.: 3

  • FAO/WHO (2011) 5th FAO/WHO joint meeting on pesticide management and 7th session of the FAO panel of experts on pesticide management. 11–14 October 2011, Rome, 46p

  • Favreau G, Scanlon BR, Reedy RC (2008) Impact of land clearing and irrigation on groundwater recharge in the Lake Chad Basin, Africa. Geol Soc Am Joint Meet Houst 40(6):470

    Google Scholar 

  • Fryer JD, Hance RJ, Ludwig JW (1975) Long-term persistence of Paraquat in a sandy loam soil. Weed Res 15:189–194

    Article  CAS  Google Scholar 

  • Funderburk HH, Bozarth GA (1967) Review of the metabolism and decomposition of diquat and Paraquat. J Agric Food Chem 15:563–567

    Article  CAS  Google Scholar 

  • Gao J, Maguhn J, Spitzauer P, Kettrup A (1998) Sorption of pesticides in the sediment of the Teufelsweiher pond (Southern Germany). I: Equilibrium assessments, effect of organic carbon content and pH. Water Res 32(5):1662–1672

    Article  CAS  Google Scholar 

  • Gaultier, G (2004) Recharge et paléorecharge d’une nappe libre en milieu sahélien (Niger oriental): Approches géochimique et hydrodynamique. PhD thesis, Department of Earth Sciences, University of Paris-Sud, Orsay, France

  • Gavaud M (1977) Les grands traits de la pédogenèse au Niger méridional. Travaux et documents de l’ORSTOM 76, French

    Google Scholar 

  • Gevao B, Semple KT, Jones KC (2000) Bound pesticide residues in soils: a review. Environ Pollut 108:3–14

    Article  CAS  Google Scholar 

  • Gonzalez-Pradas E, Villafranca-Sanchez M, Del Rey-Bueno F, Urena-Amate MD, Fernandez-Perez M (2000) Removal of Paraquat and atrazine from water by montmorillonite-(Ce or Zr) phosphate cross-linked compounds. Pest Manag Sci 56:565–570

    Article  CAS  Google Scholar 

  • Guengant JP, Banoin M. (2003) Dynamique des populations, disponibilités en terre et adaptation des régimes fonciers: Le Niger. [Online] FAO/CICRED. 144 pp

  • Hans PL, Willems KJ, Lewis JS, Dyson J, Lewis FJ (1996) Mineralization of 2,4-D and atrazine in the unsatured zone of a sandy loam soil. Soil Biol Biochem 28(8):989–996

    Article  Google Scholar 

  • Hertzman C, Wiens M, Bowering D, Snow B, Calne D (1990) Parkinson’s disease: a case–control study of occupational and environmental risk factors. Am J Ind Med 17:349–355

    Article  CAS  Google Scholar 

  • Holtzapffel T (1985) Les minéraux argileux. Préparation Analyse diffractométrique et détermination. B Soc Geol Nord 12:1–136

    Google Scholar 

  • Iglesias A, López R, Gondar D, Antelo J, Fiol S, Arce F (2009) Effect of pH and ionic strength on the binding of Paraquat and MCPA by soil fulvic and humic acids. Chemosphere 76:107–113

    Article  CAS  Google Scholar 

  • Imay Y, Kuwatsuka S (1989) Characteristics of Paraquat degrading microbes. J Pestic Sci 14:475–480

    Article  Google Scholar 

  • Juo ASR, Oginni OO (1978) Adsorption and desorption of Paraquat in acid tropical soils. J Env Qual 7:9–12

    Article  CAS  Google Scholar 

  • Kah M, Brown CD (2006) Adsorption of ionisable pesticides in soils. Rev Environ Contam T 188:149–217

    CAS  Google Scholar 

  • Khan SU (1974) Determination of diquat and Paraquat residues in soil by gas chromatography. J Agr Food Chem 22:863–867

    Article  CAS  Google Scholar 

  • Knight BA, Tomlinson TE (1967) The interaction of paraquat (1:1′-dimethyl 4:4′-dipyridylium dichloride) with mineral soils. J Soil Sci 18:223–243

    Article  Google Scholar 

  • Koh D, Jeyaratnam J (1996) Pesticide hazards in developing countries. Sci Total Environ 188(1):S78–S85

    Article  CAS  Google Scholar 

  • Kumar M, Philip L (2006) Adsorption and desorption characteristics of hydrophobic pesticide endosulfan in four Indian soils. Chemosphere 62:1064–1077

    Article  CAS  Google Scholar 

  • Lafargue E, Marquis F, Pillot D (1998) Rock-Eval 6 applications in hydrocarbon exploration, production, and soil contamination studies. Rev I Fr Petrol 53(4):421–437

    CAS  Google Scholar 

  • Lanaro R, Luiz Costa J, Fernandes L, Ribeiro Resende R, Tavares M (2011) Detection of paraquat in oral fluid, plasma, and urine by capillary electrophoresis for diagnostics of acute poisoning. J Anal Toxicol 35:274–279

    Article  CAS  Google Scholar 

  • Le Coz M (2010) Modélisation hydrogéologique de dépôts hétérogènes : l’alluvium de la Komadougou Yobé (bassin du lac Tchad, sud-est nigérien). PhD thesis, Montpellier 2 University, France

  • Leboulanger C, Bouvy M, Pagano M, Dufour RA, Got P, Cecchi P (2009) Responses of planktonic microorganisms from tropical reservoirs to Paraquat and deltamethrin exposure. Arch Environ Con Tox 56:39–51

    Article  CAS  Google Scholar 

  • Lee KS, Kwon JW (2003) Evaluation and effective extraction method of paraquat residue of soil in Korea. In Environmental Fate and Effecs of Pesticides, ACS Symposium Serie; 853

  • Liou HH, Tsai MC, Chen CJ, Jeng JS, Chang YC, Chen SY (1997) Environmental risk factors and Parkinson’s disease: a case control study in Taiwan. Neurology 48:1583–1591

    Article  CAS  Google Scholar 

  • Luxereau A, Genthon P, Ambouta-Karimou JM (2012) Fluctuations in the size of Lake Chad: consequences on the livelihoods of the riverain peoples in eastern Niger. Reg Environ Chang. doi:10.1007/s10113-011-0267-0

    Google Scholar 

  • Madeley J (2002) Paraquat-Syngenta's controversial herbicide. Berne Declaration, Swedish Society for Nature Conservation, PAN UK, Asia Pacific, Foro Emaús Editor

  • Maqueda C, Morillo E, Rodriguez JLP (1989) Interactions in aqueous solution of certain pesticides with fulvic acids from a Spodosol. Soil Sci 148:333–356

    Article  Google Scholar 

  • Martinsson J (2010) Changes in the course of the river Komadugu Yobe, bordering Niger and Nigeria, during the 20th century. Lund University, Sweden, Master’s thesis, 64 pp

  • Ministère du développement agricole (2008) Programme d'action communautaire (PAC) Phase II. doc. n°E1881, cellule de coordination nationale, Republic of Niger. French

  • Neumeister L, Isenring R (2011) Paraquat: unacceptable health risks for users. 3rd Edition, Berne Declaration, PAN Asia and the Pacific

  • Niel H, Leduc C, Dieulin C (2005) Spatial and temporal variability of annual rainfall in the Lake Chad basin during the XXth century. Hydrolog Sci J 50(2):223–243

    Article  Google Scholar 

  • Ntow WJ (2001) Organochlorine pesticides in water, sediment, crops and human fluids in a farming community in Ghana. Arch Environ Con Tox 40:557–563

    Article  CAS  Google Scholar 

  • Ouyang Y, Mansell RS, Nkedi-Kizza P (2004) Displacement of Paraquat solution through a saturated soil column with contrasting organic matter content. B Environ Contam Tox 73:725–731

    Article  CAS  Google Scholar 

  • Panuwet P, Prapamontol T, Chantara S, Thavornyuthikarn P, Montesano MA, Jr W (2008) Concentration of urinary pesticide metabolites in small-scale farmers in Chiang Mai Province, Thailand. Sci Total Environ 407:655–668

    Article  CAS  Google Scholar 

  • Parvez S, Raismuddin S (2006) Effects of Paraquat on the freshwater fish Channa punctata (Bloch): non-enzymatic antioxidants as biomarkers of exposure. Arch Environ Con Tox 50:392–397

    Article  CAS  Google Scholar 

  • Pateiro-Moure M, Arias-Estévez M, López-Periago E, Martínez-Carballo E, Simal-Gándara J (2008a) Occurrence and downslope mobilization of quaternary herbicide residues un vineyard-devoted soils. Bull Environ Contam Toxicol 80:407–411

    Article  CAS  Google Scholar 

  • Pateiro-Moure M, Martínez-Carballo E, Arias-Estévez M, Simal-Gándara J (2008b) Determination of quaternary ammonium herbicides in soils. Comparison of digestion, shaking and microwave assisted extractions. J Chrom A 1196–1197:110–116

    Article  Google Scholar 

  • Pateiro-Moure M, Bermúdez-Couso A, Fernández-Calviño D, Arias-Estévez M, Rial-Otero R, Simal-Gándara J (2010) Paraquat and diquat sorption on iron oxide coated quartz particles and the effect of phosphates. J Chem Eng Data 5(8):2668–2672

    Article  Google Scholar 

  • Polyrakis IT (2009) Environmental pollution from pesticides. In: Costa R, Kristbergsson K (eds) Predictive modeling and risk assessment. Springer, Berlin, pp 201–224

    Chapter  Google Scholar 

  • Raina S, Kumar V, Kaushal SS, Gupta D (2008) Two cases of Paraquat poisoning from Himachal Pradesh. J Indian Acad Clin Med 9:130–132

    Google Scholar 

  • Ricketts DC (1999) The microbial biodegradation of Paraquat in soil. Pestic Sci 55:596–614

    Article  CAS  Google Scholar 

  • Roberts TR, Dyson JS, Lane MCG (2002) Deactivation of the biological activity of Paraquat in the soil environment: a review of long-term environmental fate. J Agr Food Chem 50:3623–3631

    Article  CAS  Google Scholar 

  • Sahid I, Hamzah A, Aris P (1992) Effects of Paraquat and Alachlor on soil microorganisms in peat soil. Pertanika 15:121–125

    CAS  Google Scholar 

  • Senesi N (1992) Binding mechanisms of pesticides to soil humic substances. Sci Total Environ 123:63–76

    Article  Google Scholar 

  • Senesi N, Loffredo E (2009) The role of soil organic matter in limiting organic pollution in soils with focus on endocrine disruptor compounds. In: Bahadir AM, Duca G (eds) The role of ecological chemistry in Pollution research and sustainable development. Springer, Berlin, pp 165–174

    Chapter  Google Scholar 

  • Shneider S (2010) Estimation des paramètres hydrodynamiques des sols à partir d’une modélisation inverse de données d’infiltration et de résistivité électrique. PhD thesis, University of Paris Sud, 146 pp, France

  • Slade P (1965) Photochemical degradation of Paraquat. Nature 207:515–516

    Article  CAS  Google Scholar 

  • Slade P (1966) The fate of Paraquat applied to plants. Weed Res 6:158–167

    Article  CAS  Google Scholar 

  • Smith JG (1988) Paraquat poisoning by skin absorption: a review. Hum Toxicol 7:15–24

    Article  CAS  Google Scholar 

  • Smith EA, Mayfield CI (1977) Effects of Paraquat on selected microbial activities in soil. Microb Ecol 3:333–343

    Article  CAS  Google Scholar 

  • Sogetha (1962) Etudes pédologiques dans la vallée de la Komadougou. Ministry of rural economy of the Niger republic. Technical report 1962: Paris, 80 pp., French

  • Spark K, Swift R (2002) Effect of soil composition and dissolved organic matter on pesticide sorption. Sci Total Environ 298(1–3):147–161

    Article  CAS  Google Scholar 

  • University of Hertfordshire (2014) The Pesticide Properties DataBase (PPDB) developed by the Agriculture & Environment Research Unit (AERU), University of Hertfordshire, 2006–2014

  • Vinten AJA, Yaron B, Bye PH (1983) Vertical transport of pesticides into soil when adsorbed on suspended particles. J Agr Food Chem 31:662–664

    Article  CAS  Google Scholar 

  • Waleij A, Edlund C, Holmberg M, Lesko B, Liljedahl B, Lindblad A (2004) SUDAN environmental and health risks to personnel to be deployed to Sudan, Pre-deployment assessment. FOI Swedish Defence Research Agency, NBC Defence, SE-901 82 Umeå, Stockholm

  • Weber JB (1966) Availability of a cationic herbicide adsorbed on clay minerals to cucumber seedlings. Science 152:1400–1402

    Article  CAS  Google Scholar 

  • Weber JB, Weed SB (1968) Adsorption and desorption of diquat, Paraquat and prometone by montmorillonite and kaolinite clay minerals. Soil Sci Soc Am Pro 32:485–487

    Article  CAS  Google Scholar 

  • Wibawa W, Mohamad RB, Puteh AB, Omar D, Juraimi AS, Abdullah SA (2009) Residual phytotoxicity effects of Paraquat, glyphosate and glufosinate-ammonium herbicides in soils from field-treated plots. Int J Agric Biol 11:214–216

    CAS  Google Scholar 

  • Zairi R (2008) Etude géochimique et hydrodynamique de la nappe libre du bassin du lac Tchad dans les régions de Diffa (Niger oriental) et du Bornou (nord-est du Nigeria). PhD thesis, University of Montpellier 2, 191 pp, France

Download references

Acknowledgments

This work was funded both by the French Institut de Recherche pour le Développement (IRD) and by the Water Agency of Seine Normandy (Agence de l'Eau Seine Normandie, Rouen, France). The Regional Direction of Hydraulics (DRH Diffa) and the N’Gada microcredit organization in Diffa are warmly thanked for their help in listing practices and/or chemical products in use for cultivation in SE Niger. We also warmly acknowledge the help of local farmers of the village of Boulanguri for allowing access to field sites. Steve Anderson (KARKARA NGO, Diffa, Niger) is also thanked for his detailed comments on the manuscript and Marie Vaccaro (University of Rouen) for her technical assistance. We are grateful to Dr. Bridget R. Scanlon (University of Texas at Austin) for her editorial assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marc Crampon.

Additional information

Responsible editor: Philippe Garrigues

Electronic supplementary material

Below is the link to the electronic supplementary material.

SM 1

Pesticides used by smallholder farmers in the downstream part of the Komadugu Yobé 1 River, SE Niger (DOCX 20 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Crampon, M., Copard, Y., Favreau, G. et al. Occurrence of 1,1′-dimethyl-4,4′-bipyridinium (Paraquat) in irrigated soil of the Lake Chad Basin, Niger. Environ Sci Pollut Res 21, 10601–10613 (2014). https://doi.org/10.1007/s11356-014-3064-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-014-3064-8

Keywords

Navigation