Skip to main content
Log in

Behavior of sartans (antihypertensive drugs) in wastewater treatment plants, their occurrence and risk for the aquatic environment

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Pharmaceuticals and other anthropogenic trace contaminants reach wastewaters and are often not satisfactorily eliminated in sewage treatment plants. These contaminants and/or their degradation products may reach surface waters, thus influencing aquatic life. In this study, the behavior of five different antihypertonic pharmaceuticals from the sartan group (candesartan, eprosartan, irbesartan, olmesartan and valsartan) is investigated in lab-scale sewage plants. The elimination of the substances with related structures varied broadly from 17 % for olmesartan up to 96 % for valsartan. Monitoring data for these drugs in wastewater effluents of six different sewage treatment plants (STPs) in Bavaria, and at eight rivers, showed median concentrations for, e.g. valsartan of 1.1 and 0.13 μg L−1, respectively. Predicted environmental concentrations (PEC) were calculated and are mostly consistent with the measured environmental concentrations (MEC). The selected sartans and the mixture of the five sartans showed no ecotoxic effects on aquatic organisms in relevant concentrations. Nevertheless, the occurrence of pharmaceuticals in the environment should be reduced to minimize the risk of their distribution in surface waters, ground waters and bank filtrates used for drinking water.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • AUE (2011) Monthly report of the monitoring station at Weil am Rhein. Amt für Umwelt und Energie Basel-Stadt, http://www.aue.bs.ch/2011allweil.pdf (in German)

  • Avdeef A, Barrett DA, Shaw PN, Knaggs RD, Davis SS (1996) Octanol-, chloroform-, and propylene glycol dipelargonat-water partitioning of morphine-6-glucorinide and other related opiates. J Med Chem 39(22):4377–4381

    Article  CAS  Google Scholar 

  • Bergmann A, Fohrmann R, Weber F-A (2011) Set of monitoring data of environmental concentrations of pharmaceuticals. Vol 66/2011. Umweltbundesamt (in German)

  • Berkner S, Thierbach C (2013) Biodegradability and transformation of human pharmaceutical active ingredients in environmentally relevant test systems. Environ Sci Pollut Res Int. doi:10.1007/s11356-013-1868-6

    Google Scholar 

  • BUND (2012) www.bund-bawue.de. Accessed 20 Dec 2013 (in German)

  • ChemAxxon http://www.chemicalize.org/. Accessed 5 Jun 2013

  • Cleuvers M (2003) Aquatic ecotoxicity of pharmaceuticals including the assessment of combination effects. Toxicol Lett 142(3):185–194

    Article  CAS  Google Scholar 

  • Coetsier CM, Spinelli S, Lin L, Roig B, Touraud E (2009) Discharge of pharmaceutical products (PPs) through a conventional biological sewage treatment plant: MECs vs PECs? Environ Int 35(5):787–792

    Article  CAS  Google Scholar 

  • DrugBank http://www.drugbank.ca, DrugBank 3.0. Accessed 5 Jun 2013

  • ECB (2003) Technical guidance document on risk assessment, part II

  • EPA US (2011) EPI Suite™ v4.10. 4.10 edn. United States Environmental Protection Agency, http://www.epa.gov/oppt/exposure/pubs/episuitedl.htm

  • Escher BI, Baumgartner R, Koller M, Treyer K, Lienert J, McArdell CS (2011) Environmental toxicology and risk assessment of pharmaceuticals from hospital wastewater. Water Res 45(1):75–92

    Article  CAS  Google Scholar 

  • Fent K, Weston AA, Caminada D (2006) Ecotoxicology of human pharmaceuticals. Aquat Toxicol 76:122–159

    Article  CAS  Google Scholar 

  • Ferrer I, Thurman EM (2012) Analysis of 100 pharmaceuticals and their degradates in water samples by liquid chromatography/quadrupole time-of-flight mass spectrometry. J Chromatogr A 1259:148–157

    Article  CAS  Google Scholar 

  • Fick J, Lindberg RH, Kaj L, Brorström-Lundén E (2011) Results from the Swedish National Screening Programme 2010; Subreport 3. Pharmaceuticals. Swedish Environmental Research Institute

  • Grubbs FE (1969) Procedures for detecting outlying observations in samples. Technometrics 11(1):1–21

    Article  Google Scholar 

  • Heberer T (2002) Occurrence, fate, and removal of pharmaceutical residues in the aquatic environment: a review of recent research data. Toxicol Lett 131:5–17

    Article  CAS  Google Scholar 

  • Helbling DE, Hollender J, Kohler H-PE, Fenner K (2010a) Structure-based interpretation of biotransformation pathways of amide-contaning compounds in sludge-seeded bioreactors. Environ Sci Technol 44:6628–6635

    Article  CAS  Google Scholar 

  • Helbling DE, Hollender J, Kohler H-PE, Singer H, Fenner K (2010b) High-troughput identification of microbial transformation products of organic micropollutants. Environ Sci Technol 44:6621–6627

    Article  CAS  Google Scholar 

  • Hernando MD, Mezcua M, Fernández-Alba AR, Barceló D (2006) Environmental risk assessment of pharmaceutical residues in wastewater effluents, surface waters and sediments. Talanta 69:334–342

    Article  CAS  Google Scholar 

  • Hoeger B (2008) Novartis environmental assessment: Aliskiren / Valsartan. Global Pharma Environment. http://www.accessdata.fda.gov/drugsatfda_docs/nda/2009/022217s000ea.pdf

  • Hollender J, Zimmermann SG, Koepke S, Krauss M, McArdell CS, Ort C, Singer H, von Gunten U, Siegrist H (2009) Elimination of organic micropollutants in a municipal wastewater treatment plant upgraded with a full-scale post-ozonation followed by sand filtration. Environ Sci Technol 43:7862–7869

    Article  CAS  Google Scholar 

  • Huber MM, Göbel A, Joss A, Hermann N, Löffler D, McArdell CS, Ried A, Siegrist H, Ternes TA, von Gunten U (2005) Oxidation of pharmaceuticals during ozonation of municipal wastewater effluents: a pilot study. Environ Sci Technol 39:4290–4299

    Article  CAS  Google Scholar 

  • Joss A, Keller E, Alder AC, Gobel A, McArdell CS, Ternes T, Siegrist H (2005) Removal of pharmaceuticals and fragrances in biological wastewater treatment. Water Res 39(14):3139–3152

    Article  CAS  Google Scholar 

  • Kasprzyk-Hordern B, Dinsdale RM, Guwy AJ (2008) The occurrence of pharmaceuticals, personal care products, endocrine disruptors and illicit drugs in surface water in South Wales, UK. Water Res 42(13):3498–3518

    Article  CAS  Google Scholar 

  • Kasprzyk-Hordern B, Dinsdale RM, Guwy AJ (2009) Illicit drugs and pharmaceuticals in the environment—forensic applications of environmental data, part 2: pharmaceuticals as chemical markers of faecal water contamination. Environ Pollut 157(6):1778–1786

    Article  CAS  Google Scholar 

  • Kern S, Baumgartner R, Helbling DE, Hollender J, Singer H, Loos MJ, Schwarzenbach RP, Fenner K (2010) A tiered procedure for assessing the formation of biotransformation products of pharmaceuticals and biocides during activated sludge treatment. J Environ Monitor 12:2100–2111

    Article  CAS  Google Scholar 

  • Kovalova L, Siegrist H, Singer H, Wittmer A, McArdell CS (2012) Hospital wastewater treatment by membrane bioreactor: performance and efficiency for organic micropollutant elimination. Environ Sci Technol 46:1536–1545

    Article  CAS  Google Scholar 

  • Kümmerer K (2008) Pharmaceuticals in the environment: sources, fate, effects and risks, 3rd edn. Springer, Berlin

    Book  Google Scholar 

  • Kümmerer K (2009) The presence of pharmaceuticals in the environment due to human use—present knowledge and future challenges. J Environ Manag 90:2354–2366

    Article  Google Scholar 

  • Kümmerer K (2010) Pharmaceuticals in the environment. Annu Rev Environ Resour 35:57–75

    Article  Google Scholar 

  • Larsson DGJ, de Pedro C, Paxeus N (2007) Effluent from drug manufactures contains extremely high levels of pharmaceuticals. J Hazard Mater 148:751–755

    Article  CAS  Google Scholar 

  • Letzel M, Weiss K, Schüssler W, Sengl M (2010) Occurrence and fate of the human pharmaceutical metabolite ritalinic acid in the aquatic system. Chemosphere 81:1416–1422

    Article  CAS  Google Scholar 

  • Margot J, Kienle C, Magnet A, Weil M, Rossi L, De Alencastro LF, Abegglen C, Thonney D, Chèvre N, Schärer M, Barry DA (2013) Treatment of micropollutants in municipal wastewater: ozone or powdered activated carbon. Sci Total Environ 461–462:480–498

    Article  Google Scholar 

  • Maycock DS, Watts CD (2011) Pharmaceuticals in drinking water. In: Jerome ON (ed) Encyclopedia of environmental health. Elsevier, Burlington, pp 472–484

    Chapter  Google Scholar 

  • Miège C, Choubert JM, Ribeiro L, Eusebe M, Coquery M (2009) Fate of pharmaceuticals and personal care products in wastewater treatment plants—conception of a database and first results. Environ Pollut 157(5):1721–1726

    Article  Google Scholar 

  • Mompelat S, Le Bot B, Thomas O (2009) Occurrence and fate of pharmaceutical products and by-products, from resource to drinking water. Environ Int 35:803–814

    Article  CAS  Google Scholar 

  • Nikolaou A, Meric S, Fatta D (2007) Occurrence patterns of pharmaceuticals in water and wastewater environments. Anal Bioanal Chem 387:1225–1234

    Article  CAS  Google Scholar 

  • Nödler K, Hillebrand O, Idzik K, Strathmann M, Schiperski F, Zirlewagen J, Licha T (2013) Occurrence and fate of the angiotensin II receptor antagonist transformation product valsartan acid in the water cycle—a comparative study with selected β-blockers and the persistent anthropogenic wastewater indicators carbamazepine and acesulfame. Water Res 47(17):6650–6659

    Article  Google Scholar 

  • Scherrer RA, Crooks SL (1989) Titration in water-saturated octanol: a guide to partition coefficients of ion pairs and receptor-site interactions. In: Fauchere JL (ed) Quantitative structure-activity relationships in drug design. New York, pp 59–62

  • Schmitt-Jansen M, Bartels P, Adler N, Altenburger R (2007) Phytotoxicity assessment of diclofenac and its phototransformation products. Anal Bioanal Chem 387:1389–1396

    Article  CAS  Google Scholar 

  • Schwabe U, Paffrath D (2010) Report of pharmaceutical prescriptions 2010. Springer, Berlin (in German)

    Google Scholar 

  • Schwabe U, Paffrath D (2013) Report of pharmaceutical prescriptions 2013. Springer, Berlin (in German)

    Google Scholar 

  • Sinclair CJ, Boxall ABA (2003) Assessing the ecotoxicity of pesticide transformation products. Environ Sci Technol 37:4617–4625

    Article  CAS  Google Scholar 

  • Statistisches Bundesamt (2012) www.destatis.de. Assessed 20 Dec 2013 (in German)

  • Yu JT, Bouwer EJ, Coelhan M (2006) Occurrence and biodegradability studies of selected pharmaceuticals and personal care products in sewage effluent. Agric Water Manag 86:72–80

    Article  Google Scholar 

Download references

Acknowledgments

The authors want to acknowledge S. Bertsch, F. Rehberger and N. Groeger for their skilful technical assistance and D. Cardin for his linguistic support. This work was financed by the German Federal Ministry of Education and Research with the funding code: 02WRS1273.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marion Letzel.

Additional information

Responsible editor: Hongwen Sun

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 102 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bayer, A., Asner, R., Schüssler, W. et al. Behavior of sartans (antihypertensive drugs) in wastewater treatment plants, their occurrence and risk for the aquatic environment. Environ Sci Pollut Res 21, 10830–10839 (2014). https://doi.org/10.1007/s11356-014-3060-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-014-3060-z

Keywords

Navigation