Skip to main content

Advertisement

Log in

Impact of raw pig slurry and pig farming practices on physicochemical parameters and on atmospheric N2O and CH4 emissions of tropical soils, Uvéa Island (South Pacific)

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Emissions of CH4 and N2O related to private pig farming under a tropical climate in Uvéa Island were studied in this paper. Physicochemical soil parameters such as nitrate, nitrite, ammonium, Kjeldahl nitrogen, total organic carbon, pH and moisture were measured. Gaseous soil emissions as well as physicochemical parameters were compared in two private pig farming strategies encountered on this island on two different soils (calcareous and ferralitic) in order to determine the best pig farming management: in small concrete pens or in large land pens. Ammonium levels were higher in control areas while nitrate and nitrite levels were higher in soils with pig slurry inputs, indicating that nitrification was the predominant process related to N2O emissions. Nitrate contents in soils near concrete pens were important (≥55 μg N/g) and can thus be a threat for the groundwater. For both pig farming strategies, N2O and CH4 fluxes can reach high levels up to 1 mg N/m2/h and 1 mg C/m2/h, respectively. CH4 emissions near concrete pens were very high (≥10.4 mg C/m2/h). Former land pens converted into agricultural land recover low N2O emission rates (≤0.03 mg N/m2/h), and methane uptake dominates. N2O emissions were related to nitrate content whereas CH4 emissions were found to be moisture dependent. As a result relating to the physicochemical parameters as well as to the gaseous emissions, we demonstrate that pig farming in large land pens is the best strategy for sustainable family pig breeding in Uvéa Islands and therefore in similar small tropical islands.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Alory G, Delcroix T (1999) Climatic variability in the vicinity of Wallis, Futuna, and Samoa islands (13°–15° S, 180°–170° W). Oceanol Acta 22(3):249–263

    Article  Google Scholar 

  • Bertora C, Alluvione F, Zavattaro L, van Groenigen JW, Veltho G, Grignani C (2008) Pig slurry treatment modifies slurry composition, N2O, and CO2 emissions after soil incorporation. Soil Biol Biochem 40:1999–2006

    Article  CAS  Google Scholar 

  • Butterbach-Bahl K, Gasche R, Huber CH, Kreutzer K, Papen H (1998) Impact of N-input by wet deposition on N-trace gas fluxes and CH4-oxidation in spruce forest ecosystems of temperature zone in Europe. Atmos Environ 32(3):559–564

    Article  CAS  Google Scholar 

  • Carter MS (2007) Contribution of nitrification and denitrification to N2O emissions from urine patches. Soil Biol Biochem 39:2091–2102

    Article  CAS  Google Scholar 

  • Chadwick D, Sommer S, Thorman R, Fangueiro D, Cardenas L, Amon B, Misselbrook T (2011) Manure management: implications for greenhouse gas emissions. Anim Feed Sci Technol 166–167:514–531

    Article  Google Scholar 

  • Clemens J, Huschka A (2001) The effect of biological oxygen demand of cattle slurry and soil moisture on nitrous oxide emissions. Nutr Cycl Agroecosyst 59:193–198

    Article  CAS  Google Scholar 

  • Clemens J, Trimborn M, Weiland P, Amon B (2006) Mitigation of greenhouse gas emissions by anaerobic digestion of cattle slurry. Agric Ecosyst Environ 112:171–177

    Article  CAS  Google Scholar 

  • Dambreville C, Henault C, Bizouard F, Morvan T, Chaussod R, Germon JC (2006) Compared effects of long-term pig slurry applications and mineral fertilization on soil denitrification and its end products (N2O, N2). Biol Fertil Soils 42:490–500

    Article  Google Scholar 

  • De Klein CAM, Van Logtestijn RSP (1994) Denitrification and N2O emission from urine-affected grassland soil. Plant Soil 163:235–242

    Article  Google Scholar 

  • Dittert K, Lampe C, Gasche R, Butterbach-Bahl K, Wachendorf M, Papen H, Sattelmacher B, Taube F (2005) Short-term effects of single or combined application of mineral N fertilizer and cattle slurry on the fluxes of radiatively active trace gases from grassland soil. Soil Biol Biochem 37:1664–1674

    Article  Google Scholar 

  • Dobbie KE, Smith KA, Priemé A, Christensen S, Degorska A, Olanski P (1996) Effect of land use on the rate of methane uptake by surface soils in northern Europe. Atmos Environ 30(7):1005–1011

    Article  CAS  Google Scholar 

  • Fangueiro D, Gusmao M, Grilo J, Porfirio J, Vasconcelos E, Cabral F (2010) Proportion composition and potential N mineralisation of particle size fractions obtained by mechanical separation of animal slurry. Biosyst Eng 106:333–337

    Article  Google Scholar 

  • Hensen A, Groot TT, van den Bulk VCM, Vermeulen AT, Olesen JE, Schelde K (2006) Dairy farm CH4 and N2O emissions, from one square meter to the full farm scale. Agric Ecosyst Environ 112:146–152

    Article  CAS  Google Scholar 

  • Holmes RM, Aminot A, Kérouel R, Hooker BA, Peterson BJ (1999) A simple and precise method for measuring ammonium in marine and freshwater ecosystems. Can J Fish Aquat Sci 56(10):1801–1808

    Article  CAS  Google Scholar 

  • Jones SK, Rees RM, Skiba UM, Ball BC (2007) Influence of organic and mineral N fertiliser on N2O fluxes from a temperate grassland. Agric Ecosyst Environ 121:74–83

    Article  CAS  Google Scholar 

  • Kiese R, Butterbach-Bahl K (2002) N2O and CO2 emissions from three different tropical forest sites in the wet tropics of Queensland, Australia. Soil Biol Biochem 34:975–987

    Article  CAS  Google Scholar 

  • Konda R, Ohta S, Ishizuka S, Arai S, Ansori S, Tanaka N, Hardjono A (2008) Spatial structures of N2O, CO2, and CH4 fluxes from Acacia mangium plantation soils during a relatively dry season in Indonesia. Soil Biol Biochem 40:3021–3030

    Article  CAS  Google Scholar 

  • Kyveryga PM, Blackmer AM, Ellsworth JW, Isla R (2004) Soil pH effects on nitrification of fall-applied anhydrous ammonia. Soil Sci Soc Am J 68:545–551

    Article  CAS  Google Scholar 

  • Le Mer J, Roger P (2001) Production, oxidation, emission and consumption of methane by soils: a review. Eur J Soil Biol 37:25–50

    Article  Google Scholar 

  • Legros S, Doelsch E, Feder F, Moussard G, Sansoulet J, Gaudet JP, Rigaud S, Basile Doelsch I, Saint Macary H, Bottero JY (2013) Fate and behaviour of Cu and Zn from pig slurry spreading in a tropical water–soil–plant system. Agric Ecosyst Environ 164:70–79

    Article  CAS  Google Scholar 

  • Louro A, Sawamoto T, Chadwick D, Pezzolla D, Bol R, Báez D, Cardenas L (2013) Effect of slurry and ammonium nitrate application on greenhouse gasfluxes of a grassland soil under atypical South West England weather conditions. Agric Ecosyst Environ 181:1–11

    Article  CAS  Google Scholar 

  • Mappe I, Joly L, Durry G, Thomas X, Decarpenterie T, Cousin J, Dumelie N, Roth E, Chakir A, Grillon PG (2013) QCLAS, a quantum cascade laser absorption spectrometer devoted to the in situ measurement of atmospheric N2O and CH4 emission fluxes. Rev Sci Instrum 84:2

    Article  Google Scholar 

  • Martinez J, Peu P (2000) Nutrient fluxes from a soil treatment process for pig slurry. Soil Use Manag 16(2):100–107

    Article  Google Scholar 

  • Martinez J, Guiziou F, Peu P, Gueutier V (2003) Influence of treatment techniques for pig slurry on methane emissions during subsequent storage. Biosyst Eng 85(3):347–354

    Article  Google Scholar 

  • Mkhabela MS, Gordon R, Burton D, Smith E, Madani A (2009) The impact of management practices and meteorological conditions on ammonia and nitrous oxide emissions following application of pig slurry to forage grass in Nova Scotia. Agric Ecosyst Environ 130:41–49

    Article  CAS  Google Scholar 

  • Möller K, Stinner W (2009) Effects of different manuring systems with and without biogas digestion on soil mineral nitrogen content and on gaseous nitrogen losses (ammonia, nitrous oxides). Eur J Agron 30:1–16

    Article  Google Scholar 

  • Morvan T, Leterme P, Arsene GG, Mary B (1997) Nitrogen transformations after the spreading of pig slurry on bare soil and ryegrass using 15N-labelled ammonium. Eur J Agron 7:181–188

    Article  Google Scholar 

  • Müller C, Stevens RJ, Laughlin RJ (2003) Evidence of carbon stimulated N transformations in grassland soil after slurry application. Soil Biol Biochem 35:285–293

    Article  Google Scholar 

  • Nicolardot B, Germon JC (2008) Emissions de méthane (CH4) et d’oxydes d’azote (N2O) et NOx) par les sols cultivés. Aspects généraux et effet du non travail du sol. Etude Gest Sols 15(3):171–182

    Google Scholar 

  • Pathak H (1999) Emissions of nitrous oxide from soil. Curr Sci 77(3):359–369

    CAS  Google Scholar 

  • Paul JW, Beauchamp EG (1995) Availability of manure slurry ammonium for corn using 15N-labelled (NH4)2SO4. Can J Soil Sci 75(1):35–42

    Google Scholar 

  • Price RC, Maillet P, MacDougall I, Dupont J (1991) The geochemistry of basalts from the Wallis Islands, northern Melanesian borderland: evidence for a lithospheric origin for Samoan-type basaltic magmas. J Volcaol Geotherm Res 45:267–288

    Article  CAS  Google Scholar 

  • Sanchez M, Gonzalez JL (2005) The fertilizer value of pig slurry. I. Values depending on the type of operation. Bioresour Technol 96:1117–1123

    Article  CAS  Google Scholar 

  • Sherlock RR, Sommer SG, Khan RZ, Wood CW, Guertal EA, Freney JR, Dawson CO, Cameron KC (2002) Ammonia, methane, and nitrous oxide emission from pig slurry applied to a pasture in New Zealand. J Environ Qual 31:1491–1501

    Article  CAS  Google Scholar 

  • Simek M, Jisova L, Hopkins DW (2002) What is the so-called optimum pH for denitrification in soil? Soil Biol Biochem 34:1227–1234

    Article  CAS  Google Scholar 

  • Smith E, Gordon R, Bourqu C, Campbell A (2008) Management strategies to simultaneously reduce ammonia, nitrous oxide and odour emission from surface-applied swine manure. Can J Soil Sci 87:469–477

    Google Scholar 

  • Sommer SG, Petersen SO, Sogaard HT (2000) Greenhouse gas emission from stored livestock slurry. J Environ Qual 29:744–751

    Article  CAS  Google Scholar 

  • Stevens RJ, Laughlin RJ (2001) Effect of liquid manure on the mole fraction of nitrous oxide evolved from soil containing nitrate. Chemosphere 42:105–111

    Article  CAS  Google Scholar 

  • Tate KR, Ross DJ, Saggar S, Hedley CB, Dando J, Singh BK, Lambie SM (2007) Methane uptake in soils from Pinus radiata plantations, a reverting shrubland and adjacent pastures: effects of land-use change, and soil texture, water and mineral nitrogen. Soil Biol Biochem 39:1437–1449

    Article  CAS  Google Scholar 

  • Tenuta M, Mkhabela M, Tremorina D, Coppi L, Phipps G, Flaten D, Ominskic K (2010) Nitrous oxide and methane emission from a coarse-textured grassland soil receiving hog slurry. Agric Ecosyst Environ 138:35–43

    Article  CAS  Google Scholar 

  • Treguer P, Le Corre P (1975) Analyse des sels nutritifs sur Autoanalyzer II: nitrates+ nitrites, Manuel D’Analyse des Sels Nutritifs dans l’Eau de Mer, University Bretagne Occidentale, France

  • VanderZaag AC, Jayasundara S, Wagner-Riddle C (2011) Strategies to mitigate nitrous oxide emissions from land applied manure. Anim Feed Sci Technol 166–167:464–479

    Article  Google Scholar 

  • Velthof GL, Mosquera J (2011) The impact of slurry application technique on nitrous oxide emission from agricultural soils. Agric Ecosyst Environ 140:298–308

    Article  CAS  Google Scholar 

  • Verchot LV, Davidson EA, Cattanio JH, Ackerman IL (2000) Land use change and biogeochemical controls of methane fluxes in soils of eastern Amazonia. Ecosystems 3:41–56

    Article  CAS  Google Scholar 

  • Yan YP, Sha LQ, Cao M, Zheng Z, Tang JW, Wang YH, Zhang YP, Wang R, Liu GR, Wang YS (2008) Fluxes of CH4 and N2O from soil under a tropical seasonal rain forest in Xishuangbanna, Southwest China. J Environ Sci 20(2):207–215

    Article  CAS  Google Scholar 

  • Yashiro Y, Kadir WR, Okuda T, Koizumi H (2008) The effects of logging on soil greenhouse gas (CO2, CH4, N2O) flux in a tropical rain forest, Peninsular Malaysia. Agric For Meteorol 148:799–806

    Article  Google Scholar 

Download references

Acknowledgments

The authors want to thank the French “Ministère de l’Outre Mer”, the universities of Reims Champagne Ardenne and of Nouvelle Calédonie for the financial support of the “Etude des Lisiers d’Elevage Porcins” program and the people of Uvéa for their kind welcome allowing the studies concerning their private pig farming. We are grateful to the reviewers whose judicious comments have greatly improved the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Roth.

Additional information

Responsible editor: Gerhard Lammel

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Roth, E., Gunkel-Grillon, P., Joly, L. et al. Impact of raw pig slurry and pig farming practices on physicochemical parameters and on atmospheric N2O and CH4 emissions of tropical soils, Uvéa Island (South Pacific). Environ Sci Pollut Res 21, 10022–10035 (2014). https://doi.org/10.1007/s11356-014-3048-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-014-3048-8

Keywords

Navigation