Skip to main content

Advertisement

Log in

Antimicrobial potential of the ionophore monensin on freshwater biofilm bacteria

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Microorganisms play key roles in stream ecosystems, but comparatively little is known about the resilience of freshwater bacterial communities and their susceptibility to the chemical by-products of agricultural land use. Antibiotics used in the agricultural sector are of particular concern and have been detected in waterways associated with agricultural land. Despite widespread agricultural intensification globally and the sector's high antibiotic use, the effects of agricultural antibiotic by-products on stream microbial communities have yet to be characterised. We investigated the impacts of the antibiotic monensin on microbial biofilm communities in a simulated contamination event using streamside-replicated channels. A 24-h pulse experiment in flow channels precolonised by stream biofilm microbial communities contrasted the effects of monensin concentrations ranging from realistic to extreme toxicity levels (1–550 ug L−1). Biofilm community composition was characterised immediately before and after the pulse for several weeks using automated ribosomal intergenic spacer analysis. Despite applying acutely toxic levels of monensin, only limited effects to biofilm community composition were detected immediately after antibiotic application, and these disappeared within 4 days. Rather, temporal factors drove biofilm differences, highlighting the overriding importance of wider, catchment-level, physiochemical hydrological influences on structuring freshwater biofilm communities, as opposed to localised and sporadic agricultural surface runoff contamination events containing antibiotics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • American Public Health Association (1998) Standard methods for the examination of water and wastewater, 20th edn. American Public Health Association, Washington D.C., USA

    Google Scholar 

  • Anderson M, Gorley R, Clarke K (2008) PERMANOVA + for PRIMER: guide to software and statistical methods. PRIMER-E Ltd., Plymouth, United Kingdom

    Google Scholar 

  • Anderson-Glenna M, Bakkestuen V, Clipson N (2008) Spatial and temporal variability in epilithic biofilm bacterial communities along an upland river gradient. FEMS Microbiol Ecol 64:407–418

    Article  CAS  Google Scholar 

  • Bassin J, Pronk M, Muyzer G, Kleerebezem R, Dezotti M, van Loosdrecht M (2011) Effect of elevated salt concentrations on the aerobic granular sludge process: linking microbial activity with microbial community structure. Appl Environ Microbiol. doi:10.1128/AEM.05016-11

    Google Scholar 

  • Battin T, Kaplan L, Newbold J, Cheng X, Hansen C (2003) Effects of current velocity on the nascent architecture of stream microbial biofilms. Appl Environ Microbiol 69:5443–5452

    Article  CAS  Google Scholar 

  • Berninger U, Finlay B, Kuuppo-Leinikki P (1991) Protozoan control of bacterial abundances in freshwater. Limnol Oceanogr 36:139–147

    Article  Google Scholar 

  • Besemer K, Peter H, Logue J, Langenheder S, Lindström E, Tranvik L, Battin T (2012) Unraveling assembly of stream biofilm communities. ISME J 6:1459–1468

    Article  CAS  Google Scholar 

  • Bott T, Kaplan L (1985) Bacterial biomass, metabolic state, and activity in stream sediments: relation to environmental variables and multiple assay comparisons. Appl Environ Microbiol 50:508–522

    CAS  Google Scholar 

  • Castiglioni S, Bagnati R, Calamari D, Fanelli R, Zuccato E (2005) A multiresidue analytical method using solid-phase extraction and high-pressure liquid chromatography tandem mass spectrometry to measure pharmaceuticals of different therapeutic classes in urban wastewaters. J Chromatogr A 1092:206–215

    Article  CAS  Google Scholar 

  • Choung C, Hyne R, Stevens M, Hose G (2013) The ecological effects of a herbicide–insecticide mixture on an experimental freshwater ecosystem. Environ Pollut 172:264–274

    Article  CAS  Google Scholar 

  • Costanzo S, Murby J, Bates J (2005) Ecosystem response to antibiotics entering the aquatic environment. Mar Pollut Bull 51:218–223

    Article  CAS  Google Scholar 

  • Das M, Royer T, Leff L (2007) Diversity of fungi, bacteria, and actinomycetes on leaves decomposing in a stream. Appl Environ Microbiol 73:756–767

    Article  CAS  Google Scholar 

  • Davis B, Luger S, Tai P (1986) Role of ribosome degradation in the death of starved Escherichia coli cells. J Bacteriol 166:439–445

    CAS  Google Scholar 

  • D'Costa V, McGrann K, Hughes D, Wright G (2006) Sampling the antibiotic resistome. Science 311:374–377

    Article  Google Scholar 

  • Dolliver H, Kumar K, Gupta S, Singh A (2008) Application of enzyme-linked immunosorbent assay analysis for determination of monensin in environmental samples. J Environ Qual 137:1220–1226

    Article  Google Scholar 

  • Donlan R, Costerton J (2002) Biofilms: survival mechanisms of clinically relevant microorganisms. Clin Microbiol Rev. doi:10.1128/CMR.15.2.167-193.2002

    Google Scholar 

  • Donoho A (1984) Biochemical studies on the fate of monensin in animals and in the environment. J Anim Sci 58:1528–1539

    CAS  Google Scholar 

  • Dosskey M (2001) Toward quantifying water pollution abatement in response to installing buffers on crop land. Environ Manag 28:577–598

    CAS  Google Scholar 

  • ELANCO Rumensin Trough Treatment MSDS (2007) Eli Lilly and Company NZ Limited, Auckland, New Zealand

  • Elliot J, Irish A, Reynolds C (2000) The diversity and succession of phytoplankton communities in disturbance-free environments, using the model PROTECH. Arch Hydrobiol 149:251–258

    Google Scholar 

  • Engemann C, Keen P, Knapp C, Hall K, Graham D (2008) Fate of tetracycline resistance genes in aquatic systems: migration from the water column to peripheral biofilms. Environ Sci Technol 42:5131–5136

    Article  CAS  Google Scholar 

  • Feris K, Ramsey P, Frazer C, Rillig M, Gannon J, Holben B (2003) Structure and seasonal dynamics of hyporheic zone microbial communities in free-stone rivers of western United States. Microb Ecol 46:200–215

    CAS  Google Scholar 

  • Finlay S, Strayer D, Goumbala C, Gould K (1993) Metabolism of streamwater dissolved organic carbon in the shallow hyporheic zone. Limnol Oceanogr 38:1493–1499

    Article  Google Scholar 

  • Fisher M, Triplett E (1999) Automated approach for ribosomal intergenic spacer analysis of microbial diversity of microbial diversity and its applications to freshwater bacterial communities. Appl Environ Microbiol 65:4630–4636

    CAS  Google Scholar 

  • Gillevet P, Sikaroodi M, Torzilli A (2009) Analyzing salt-marsh fungal diversity: comparing ARISA fingerprinting with clone sequencing and pyrosequencing. Fungal Ecol 2:160–167

    Article  Google Scholar 

  • Halling-Sørensen B, Nors Nielsen S, Lanzky P, Ingerslev F, Holten Lützhøft H, Jørgensen S (1998) Occurrence, fate and effects of pharmaceutical substances in the environment—a review. Chemosphere 36:357–393

    Article  Google Scholar 

  • Hansen M, Krogh K, Björkland E, Brandt A, Halling-Sørensen B (2009) Environmental risk assessment of ionophores. Trends Anal Chem 28:534–542

    Article  CAS  Google Scholar 

  • Herrmann P (2009) Disturbance, predation and competition in a flood-prone stream. PhD Dissertation. University of Otago, New Zealand

    Google Scholar 

  • Hillis D, Lissemore L, Sibley P, Solomon K (2007) Effects of monensin on zooplankton communities in aquatic microcosms. Environ Sci Technol 41:6620–6626

    Article  CAS  Google Scholar 

  • Jackson C, R (2001) Successional changes in bacterial assemblage structure during epilithic biofilm development. Ecology 82:555–566

  • Kemper N (2008) Veterinary antibiotics in the aquatic and terrestrial environment. Ecol Indic 8:1–13

    Article  CAS  Google Scholar 

  • Khachatourians G (1998) Agricultural use of antibiotics and the evolution and transfer of antibiotic-resistant bacteria. Can Med Assoc J 159:1129–1136

    CAS  Google Scholar 

  • Lamberti G, Resh V (1985) Comparability of introduced tiles and natural substrates for sampling lotic bacteria, algae, and macro-invertebrates. Freshwat Biol 15:21–30

    Article  Google Scholar 

  • Lange K, Liess A, Piggott J, Townsend C, Matthaei C (2011) Light, nutrients and grazing interact to determine stream diatom community composition and functional group structure. Freshwat Biol 56:264–278

    Article  Google Scholar 

  • Lapworth D, Baran N, Stuart M, Ward R (2012) Emerging organic contaminants in groundwater: a review of sources, fate and occurrence. Environ Pollut 163:287–303

    Article  CAS  Google Scholar 

  • Lear G, Anderson M, Smith J, Boxen K, Lewis G (2008) Spatial and temporal heterogeneity of the bacterial communities in stream epilithic biofilms. FEMS Microb Ecol 65:463–473

    Article  CAS  Google Scholar 

  • LIC (2007) Dairy statistics 2006-2007. Livestock Improvement Corporation, Hamilton, New Zealand

    Google Scholar 

  • Liess A, Lange K, Schulz F, Piggott J, Matthaei C, Townsend C (2008) Light, nutrients and grazing interact to determine diatom species richness via changes to productivity, nutrient state and grazer activity. J Ecol. doi:10.1111/j.1365-2745.2008.01463.x

    Google Scholar 

  • Lissemore L, Hao C, Yang P, Sibley P, Mabury S, Solomon K (2006) An exposure assessment for selected pharmaceuticals within a watershed in Southern Ontario. Chemosphere 64:717–729

    Article  CAS  Google Scholar 

  • Loudon A, Woodhams D, Wegener Parfrey L, Archer H, Knight R, McKenzie V, Harris R (2013) Microbial community dynamics and effect of environmental microbial reservoirs on red-backed salamanders (Plethodon cinereus). ISME J. doi:10.1038/ismej.2013.163

    Google Scholar 

  • Lyautey E, Jackson C, Cayrou J, Rols J, Garabétian F (2005) Bacterial community succession in natural river biofilm assemblages. Microb Ecol 50:589–601

    Article  Google Scholar 

  • Matthaei C, Piggott J, Townsend C (2010) Multiple stressors in agricultural streams: interactions among sediment addition, nutrient enrichment and water abstraction. J Appl Ecol 47:639–649

    Article  Google Scholar 

  • Mawdsley J, Bardgett R, Merry R, Pain B, Theodorou M (1995) Pathogens in livestock waste, their potential for movement through soil and environmental pollution. Appl Soil Ecol 2:1–15

    Article  Google Scholar 

  • McGregor E, Solomon K, Hanson M (2007) Monensin is not toxic to aquatic macrophytes at environmentally relevant concentrations. Arch Environ Contam Toxicol 53:541–551

    Article  CAS  Google Scholar 

  • Morgenroth E, Wilder P (2000) Influence of detachment mechanisms on competition in biofilms. Water Res 34:417–426

    Article  CAS  Google Scholar 

  • Muirhead R, Collins R, Bremer P (2006) The association of E. coli and soil particles in overland flow. Water Sci Technol 54:153–159

    Article  CAS  Google Scholar 

  • Murray K, Thomas S, Bodour A (2010) Prioritizing research for trace pollutants and emerging contaminants in the freshwater environment. Environ Pollut. doi:3462e3471

  • Neidhardt F, Magasanik B (1960) Studies on the role of ribonucleic acid in the growth of bacteria. Biochim Biophys Acta 42:99–116

    Article  CAS  Google Scholar 

  • PCE (2004) Growing for good: intensive farming, sustainability and New Zealand's environment. Parliamentary Commissioner for the Environment. Wellington, New Zealand

    Google Scholar 

  • Pesce S, Martin-Laurent F, Rouard N, Robin A, Montuelle B (2010) Evidence for adaptation of riverine sediment microbial communities to diuron mineralization: incidence of and soil erosion. J Soils Sediments 10:698–707

    Article  CAS  Google Scholar 

  • Piggott J, Lange K, Townsend C, Matthaei C (2012) Multiple stressors in agricultural streams: a mesocosm study of interactions along raised water temperature, sediment addition and nutrient enrichment. PLoS 7:e49873

    Article  CAS  Google Scholar 

  • Pusch M, Fiebig D, Brettar I, Eisenmann H, Ellis B, Kaplan L, Lock M, Naegeli M, Traunspurger W (1998) The role of micro-organisms in the ecological connectivity of running waters. Freshwat Biol 40:453–495

    Article  Google Scholar 

  • Ranjard L, Poly F, Lata J, Mougal C, Thioulouse J, Nazaret S (2001) Characterization of bacterial and fungal soil communities by automated ribosomal intergenic spacer analysis fingerprints: biological and methodological variability. Appl Environ Microbiol 67:4479–4487

    Article  CAS  Google Scholar 

  • Römling U, Balsalobre C (2012) Biofilm infections, their resilience to therapy and innovative treatment strategies. J Intern Med. doi:10.1111/joim.12004

    Google Scholar 

  • Russell J, Houlihan A (2003) Ionophore resistance of ruminal bacteria and its potential impact on human health. FEMS Microbiol Rev 27:65–74

    Article  CAS  Google Scholar 

  • Sabater S, Guasch A, Romaní H, Muñoz I (2002) The effect of biological factors in the efficiency of river biofilms in improving water quality. Hydrobiologica 469:149–156

    Article  CAS  Google Scholar 

  • Salis R (2010) The effects of the agricultural antibiotic monensin, dairy effluent and light in stream algal communities. BSc Honours Dissertation. University of Otago, New Zealand

    Google Scholar 

  • Sarmah A, Meyer M, Boxall A (2006) A global perspective on the use, sales, exposure pathways, occurrence, fate and effects of veterinary antibiotics (VAs) in the environment. Chemosphere 65:725–759

    Article  CAS  Google Scholar 

  • Schmeisser C, Steele H, Streit W (2007) Metagenomics, biotechnology with non-culturable microbes. Appl Microbiol Biotechnol 75:955–962

    Article  CAS  Google Scholar 

  • Searle S, Casella G, McCulloch C (1992) Variance components. Wiley, New York, USA

    Book  Google Scholar 

  • Sigee D (2005) Freshwater microbiology: biodiversity and dynamic interactions of microorganisms in the aquatic environment. Wiley, Hoboken, USA

    Google Scholar 

  • Snow D, Bartelt-Hunt S, Saunders S, Devivo S, Cassada D (2008) Detection, occurrence and fate of emerging contaminants in agricultural environments. Water Environ Res 80:868–897

    Article  CAS  Google Scholar 

  • Song W, Huang M, Rumbeiha W, Li H (2007) Determination of amprolium, carbadox, monensin, and tylosin in surface water by liquid chromatography/tandem mass spectrometry. Rapid Commun Mass Spectrom 21:1944–1950

    Article  CAS  Google Scholar 

  • Stewart P, Costerton J (2001) Antibiotic resistance of bacteria in biofilms. Lancet 358:135–138

    Article  CAS  Google Scholar 

  • Telgmann U, Horn H, Morgenroth E (2004) Influence of growth history on sloughing and erosion from biofilms. Water Res 38:3671–3684

    Article  CAS  Google Scholar 

  • Wagenhoff A, Townsend C, Matthaei C (2012) Macroinvertebrate responses along broad stressor gradients of deposited fine sediment and dissolved nutrients: a stream mesocosm experiment. J Appl Ecol 49:892–902

    Article  CAS  Google Scholar 

  • Watanabe N, Harter T, Bergamaschi B (2008) Environmental occurrence and shallow ground water detection of the antibiotic monensin from dairy farms. J Environ Qual 37:S-78–S-85

    Article  Google Scholar 

  • Watkinson A, Murby E, Kolpin D, Costanzo S (2009) The occurrence of antibiotics in an urban watershed: from wastewater to drinking water. Sci Total Environ. doi:10.1016/j.scititenv.2008.1011.1059

    Google Scholar 

  • Wellnitz T, Brader R (2003) Mechanisms influencing community composition and succession in mountain stream periphyton: interactions between scouring history, grazing and irradiance. J N Am Benthol Soc 22:528–541

    Article  Google Scholar 

  • Winkworth C (2013) Antibiotic resistance genes in freshwater biofilms along a whole river. J Water Health. doi:10.2166/wh.2013.223

    Google Scholar 

  • Winkworth C, Matthaei C, Townsend C (2008) Recently planted vegetation strips reduce Giardia runoff reaching waterways. J Environ Qual. doi:10.2134/jeq2008.0045

    Google Scholar 

  • Yergeau E, Sanschagrin S, Maynard C, St-Arnaud M, Greer C (2014) Microbial expression profiles in the rhizosphere of willows depend on soil contamination. ISME J. doi:10.1038/ismej.2013.163

    Google Scholar 

  • Young R, Matthaei C, Townsend C (2008) Organic matter breakdown and ecosystem metabolism: functional indicators for assessing river ecosystem health. J N Am Benthol Soc 27:605–625

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by a New Zealand Research, Science and Technology Postdoctoral Fellowship to CLW (UOOX0902). We thank Colin Townsend and three anonymous reviewers for editorial suggestions, and Alicia Farmer, Katha Lange, Lauren Leicester and Romana Salis for assistance with field collections and laboratory work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cynthia L Winkworth.

Additional information

Responsible editor: Robert Duran

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 38 kb)

ESM 2

(DOCX 21 kb)

ESM 3

(DOCX 19 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Winkworth, C.L., Lear, G. Antimicrobial potential of the ionophore monensin on freshwater biofilm bacteria. Environ Sci Pollut Res 21, 10139–10150 (2014). https://doi.org/10.1007/s11356-014-2911-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-014-2911-y

Keywords

Navigation