Skip to main content
Log in

Behavior of nine selected emerging trace organic contaminants in an artificial recharge system supplemented with a reactive barrier

  • 14th EuCheMS International Conference on Chemistry and the Environment (ICCE 2013, Barcelona, June 25 - 28, 2013)
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Artificial recharge improves several water quality parameters, but has only minor effects on recalcitrant pollutants. To improve the removal of these pollutants, we added a reactive barrier at the bottom of an infiltration basin. This barrier contained aquifer sand, vegetable compost, and clay and was covered with iron oxide dust. The goal of the compost was to sorb neutral compounds and release dissolved organic carbon. The release of dissolved organic carbon should generate a broad range of redox conditions to promote the transformation of emerging trace organic contaminants (EOCs). Iron oxides and clay increase the range of sorption site types. In the present study, we examined the effectiveness of this barrier by analyzing the fate of nine EOCs. Water quality was monitored before and after constructing the reactive barrier. Installation of the reactive barrier led to nitrate-, iron-, and manganese-reducing conditions in the unsaturated zone below the basin and within the first few meters of the saturated zone. Thus, the behavior of most EOCs changed after installing the reactive barrier. The reactive barrier enhanced the removal of some EOCs, either markedly (sulfamethoxazole, caffeine, benzoylecgonine) or slightly (trimethoprim) and decreased the removal rates of compounds that are easily degradable under aerobic conditions (ibuprofen, paracetamol). The barrier had no remarkable effect on 1H-benzotriazole and tolyltriazole.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Banzhaf S, Nödler K, Licha T, Krein A, Scheytt T (2012) Redox-sensitivity and mobility of selected pharmaceutical compounds in a low flow column experiment. Sci Total Environ 438(0):113–21. doi:10.1016/j.scitotenv.2012.08.041

    Article  CAS  Google Scholar 

  • Barbieri M, Carrera J, Sanchez-Vila X, Ayora C, Cama J, Köck-Schulmeyer M, López de Alda M, Barceló D, Tobella Brunet J, Hernández García M (2011) Microcosm experiments to control anaerobic redox conditions when studying the fate of organicmicropollutants in aquifer material. J Contam Hydrol 126(3–4):330–345. doi:10.1016/j.jconhyd.2011.09.003

    Article  CAS  Google Scholar 

  • Barbieri M, Carrera J, Ayora C, Sanchez-Vila X, Licha T, Nödler K, Osorio V, P´erez S, Köck-Schulmeyer M, López de Alda M, Barceló D (2012) Formation of diclofenac and sulfamethoxazole reversible transformation products in aquifer material under denitrifying conditions: batch experiments. Sci Total Environ 426(0):256–263. doi:10.1016/j.scitotenv.2012.02.058

    Article  CAS  Google Scholar 

  • Bound J, Voulvoulis N (2004) Pharmaceuticals in the aquatic environment—a comparison of risk assessment strategies. Chemosphere 56(11):1143–1155. doi:10.1016/j.chemosphere.2004.05.010

    Article  CAS  Google Scholar 

  • Bouwer H (2002) Artificial recharge of groundwater: hydrogeology and engineering. Hydrogeol J 10:121–142. doi:10.1007/s10040-001-0182-4

    Article  CAS  Google Scholar 

  • Burke V, Treumann S, Duennbier U, Greskowiak J, Massmann G (2013) Sorption behavior of 20 wastewater originated micropollutants in groundwater —column experiments with pharmaceutical residues and industrial agents. Contam Hydrol. doi:10.1016/j.jconhyd.2013.08.001

  • Carballa M, Omil F, Lema JM, Llompart M, García-Jares C, Rodríguez I, Gómez M, Ternes T (2004) Behavior of pharmaceuticals, cosmetics and hormones in a sewage treatment plant. Water Res 38(12):2918–2926. doi:10.1016/j.watres.2004.03.029

    Article  CAS  Google Scholar 

  • Díaz-Cruz MS, Barceló D (2008) Trace organic chemicals contamination in ground water recharge. Chemosphere 72(3):333–342. doi:10.1016/j.chemosphere.2008.02.031

    Article  Google Scholar 

  • Dean RA, Harper ET, Dumaual N, Stoeckel DA, Bosron WF (1992) Effects of ethanol on cocaine metabolism: formation of cocaethylene and norcocaethylene. Toxicol Appl Pharmacol 117(1):1–8. doi:10.1016/0041-008X(92)90210-J

    Article  CAS  Google Scholar 

  • Drewes JE (2009) Ground water replenishment with recycled water—water quality improvements during managed aquifer recharge. Ground Water 47(4):502–505. doi:10.1111/j.1745-6584.2009.00587_5.x

    Article  CAS  Google Scholar 

  • Göbel A, McArdell CS, Suter MJF, Giger W (2004) Trace determination of macrolide and sulfonamide antimicrobials, a human sulfonamide metabolite, and trimethoprim in wastewater using liquid chromatography coupled to electrospray tandem mass spectrometry. Anal Chem 76(16):4756–4764. doi:10.1021/ac0496603

    Article  Google Scholar 

  • Greskowiak J, Prommer H, Massmann G, Johnston CD, Nützmann G, Pekdeger A (2005) The impact of variably saturated conditions on hydrogeochemical changes during artificial recharge of groundwater. Appl Geochem 20(7):1409–1426. doi:10.1016/j.apgeochem.2005.03.002

    Article  CAS  Google Scholar 

  • Hart D, Davis L, Erickson L, Callender T (2004) Sorption and partitioning parameters of benzotriazole compounds. Microchem J 77(1):9–17. doi:10.1016/j.microc.2003.08.005

    Article  CAS  Google Scholar 

  • Heberer T (2002) Occurrence, fate, and removal of pharmaceutical residues in the aquatic environment: a review of recent research data. Toxicol Lett 131(1–2):5–17. doi:10.1016/S0378-4274(02)00041-3

    Article  CAS  Google Scholar 

  • Hillebrand O, Nödler K, Licha T, Sauter M, Geyer T (2012) Identification of the attenuation potential of a karst aquifer by an artificial dual tracer experiment with caffeine. Water Res 46(16):5381–5388. doi:10.1016/j.watres.2012.07.032

    Article  CAS  Google Scholar 

  • Hillebrand O, Musallam S, Scherer L, Nödler K, Licha T (2013) The challenge of sample-stabilisation in the era of multi-residue analytical methods: a practical guideline for the stabilisation of 46 organic micropollutants in aqueous samples. Sci Total Environ 454–455(0):289–298. doi:10.1016/j.scitotenv.2013.03.028

    Article  Google Scholar 

  • Iribar V, Carrera J, Custodio E, Medina A (1997) Inverse modelling of seawater intrusion in the Llobregat delta deep aquifer. J Hydrol 198(1–4):226–244. doi:10.1016/S0022-1694(96)03290-8

    Article  CAS  Google Scholar 

  • Jones OAH, Voulvoulis N, Lester JN (2004) Potential ecological and human health risks associated with the presence of pharmaceutically active compounds in the aquatic environment. Crit Rev Toxicol 34(4):335–350. doi:10.1080/10408440490464697, pMID: 15328767

    Article  CAS  Google Scholar 

  • Karnjanapiboonwong A, Morse AN, Maul JD, Anderson TA (2010) Sorption of estrogens, triclosan, and caffeine in a sandy loam and a silt loam soil. J Soils Sediments 10(7):1300–1307. doi:10.1007/s11368-010-0223-5

    Article  CAS  Google Scholar 

  • Kasprzyk-Hordern B, Dinsdale RM, Guwy AJ (2008) The occurrence of pharmaceuticals, personal care products, endocrine disruptors and illicit drugs in surface water in south wales, UK. Water Res 42(13):3498–3518. doi:10.1016/j.watres.2008.04.026

    Article  CAS  Google Scholar 

  • Köck-Schulmeyer M, Ginebreda A, Postigo C, López-Serna R, Pérez S, Brix R, Llorca M, MLd Alda, Petrovic M, Munné A, Tirapu L, Barceló D (2011) Wastewater reuse in Mediterranean semi-arid areas: the impact of discharges of tertiary treated sewage on the load of polar micro pollutants in the Llobregat River (NE Spain). Chemosphere 82(5):670–678. doi:10.1016/j.chemosphere.2010.11.005

    Article  Google Scholar 

  • Lapworth D, Baran N, Stuart M, Ward R (2012) Emerging organic contaminants in groundwater: a review of sources, fate and occurrence. Environ Pollut 163(0):287–303. doi:10.1016/j.envpol.2011.12.034

    Article  CAS  Google Scholar 

  • Levine AD, Asano T (2004) Peer reviewed: recovering sustainable water from wastewater. Environ Sci Technol 38(11):201A–208A. doi:10.1021/es040504n

    Article  CAS  Google Scholar 

  • Lin K, Gan J (2011) Sorption and degradation of wastewater-associated non-steroidal anti-inflammatory drugs and antibiotics in soils. Chemosphere 83(3):240–246. doi:10.1016/j.chemosphere.2010.12.083

    Article  CAS  Google Scholar 

  • Liu YS, Ying GG, Shareef A, Kookana RS (2013) Biodegradation of three selected benzotriazoles in aquifer materials under aerobic and anaerobic conditions. J Contam Hydrol 151(0):131–139. doi:10.1016/j.jconhyd.2013.05.006

    Article  CAS  Google Scholar 

  • Maeng SK, Ameda E, Sharma SK, Grützmacher G, Amy GL (2010) Organic micropollutant removal from wastewater effluent-impacted drinking water sources during bank filtration and artificial recharge. Water Res 44(14):4003–4014. doi:10.1016/j.watres.2010.03.035

    Article  CAS  Google Scholar 

  • Maeng SK, Sharma SK, Lekkerkerker-Teunissen K, Amy GL (2011) Occurrence and fate of bulk organic matter and pharmaceutically active compounds in managed aquifer recharge: a review. Water Res 45(10):3015–3033. doi:10.1016/j.watres.2011.02.017

    Article  CAS  Google Scholar 

  • Mohatt JL, Hu L, Finneran KT, Strathmann TJ (2011) Microbially mediated abiotic transformation of the antimicrobial agent sulfamethoxazole under iron-reducing soil conditions. Environ Sci Technol 45(11):4793–4801. doi:10.1021/es200413g

    Article  CAS  Google Scholar 

  • Nödler K, Licha T, Bester K, Sauter M (2010) Development of a multi-residue analytical method, based on liquid chromatographytandem mass spectrometry, for the simultaneous determination of 46 micro-contaminants in aqueous samples. J Chromatogr A 1217(42):6511–6521. doi:10.1016/j.chroma.2010.08.048

    Article  Google Scholar 

  • Nödler K, Licha T, BarbieriM, P´erez S (2012) Evidence for the microbially mediated abiotic formation of reversible and non-reversible sulfamethoxazole transformation products during denitrification. Water Res 46(7):2131–2139. doi:10.1016/j.watres.2012.01.028

    Article  Google Scholar 

  • Nödler K, Hillebrand O, Idzik K, Strathmann M, Schiperski F, Zirlewagen J, Licha T (2013) Occurrence and fate of the angiotensin II receptor antagonist transformation product valsartan acid in the water cycle-a comparative study with selected β-blockers and the persistent anthropogenic wastewater indicators carbamazepine and acesulfame. Water Res. doi:10.1016/j.watres.2013.08.034

  • Pedersen JA, Soliman M, Suffet IHM (2005) Human pharmaceuticals, hormones, and personal care product ingredients in runoff from agricultural fields irrigated with treated wastewater. J Agric Food Chem 53(5):1625–1632. doi:10.1021/jf049228m, pMID: 15740050

    Article  CAS  Google Scholar 

  • Quevauviller PP, Fouillac AM, Grath J, Ward R (2009) Groundwater monitoring, Wiley, New York. ISBN: 978-0-470-74969-2

  • Radke M, Lauwigi C, Heinkele G, Mürdter TE, Letzel M (2009) Fate of the antibiotic sulfamethoxazole and its two major human metabolites in a water sediment test. Environ Sci Technol 43(9):3135–3141. doi:10.1021/es900300u

    Article  CAS  Google Scholar 

  • Ranieri E, Verlicchi P, Young TM (2011) Paracetamol removal in subsurface flow constructed wetlands. J Hydrol 404(3-4):130–135. doi:10.1016/j.jhydrol.2011.03.015

    Article  Google Scholar 

  • Reemtsma T, Miehe U, Duennbier U, Jekel M (2010) Polar pollutants in municipal wastewater and the water cycle: occurrence and removal of benzotriazoles. Water Res 44(2):596–604. doi:10.1016/j.watres.2009.07.016

    Article  CAS  Google Scholar 

  • Samper J, Sahuquillo A, Capilla JE, Gomez Hernández JJ (1999) La contaminaci´on de las aguas subterraneas: un pproblem pendiente. ISBN:84-7840-364-7

  • Schaffer M, Börnick H, Nödler K, Licha T, Worch E (2012a) Role of cation exchange processes on the sorption influenced transport of cationic β-blockers in aquifer sediments. Water Res 46(17):5472–5482. doi:10.1016/j.watres.2012.07.013

    Article  CAS  Google Scholar 

  • Schaffer M, Boxberger N, Börnick H, Licha T, Worch E (2012b) Sorption influenced transport of ionizable pharmaceuticals onto a natural sandy aquifer sediment at different ph. Chemosphere 87(5):513–520. doi:10.1016/j.chemosphere.2011.12.053

    Article  CAS  Google Scholar 

  • Silva LJ, Lino CM, Meisel LM, Pena A (2012) Selective serotonin re-uptake inhibitors (SSRIS) in the aquatic environment: an ecopharmacovigilance approach. Sci Total Environ 437(0):185–195. doi:10.1016/j.scitotenv.2012.08.021

    Article  CAS  Google Scholar 

  • Srinivasan P, Sarmah AK, Manley-Harris M (2014) Sorption of selected veterinary antibiotics onto dairy farming soils of contrasting nature. Sci Total Environ 472(0):695–703. doi:10.1016/j.scitotenv.2013.11.104912

    Article  CAS  Google Scholar 

  • Tran NH, Urase T, Ngo HH, Hu J, Ong SL (2013) Insight into metabolic and cometabolic activities of autotrophic and heterotrophic microorganisms in the biodegradation of emerging trace organic contaminants. Bioresour Technol 146(0):721–731. doi:10.1016/j.biortech.2013.07.083917

    Article  CAS  Google Scholar 

Download references

Acknowledgments

A significant part of the work has been supported by the ENSAT project (“Enhancement of soil aquifer treatment to improve the quality of recharge water in the Llobregat delta river aquifer”) funded by the LIFE Program of the European Commission (ENV/1225 E/117). The presented study was partly funded by the German Federal Ministry of Education and Research (BMBF) as part of the funding program Sustainable Water Management NaWaM-RiSKWa (promotional reference no. 02WRS1277A, AGRO, “Risikomanagement von Spurenstoffen und Krankheitserregern in ländlichen Karsteinzugsgebieten,” which is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cristina Valhondo.

Additional information

Responsible editor: Ester Heath

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Valhondo, C., Carrera, J., Ayora, C. et al. Behavior of nine selected emerging trace organic contaminants in an artificial recharge system supplemented with a reactive barrier. Environ Sci Pollut Res 21, 11832–11843 (2014). https://doi.org/10.1007/s11356-014-2834-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-014-2834-7

Keywords

Navigation