Skip to main content
Log in

Influence of activated carbon upon the photocatalytic degradation of methylene blue under UV–vis irradiation

  • Advanced Oxidation Technologies: Advances and Challenges in IberoAmerican Countries
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Photodegradation of methylene blue (MB) was studied on TiO2 in the presence of activated carbon (AC) prepared from the sawdust of a soft wood by physical activation under CO2 flow, by pyrolysis under N2 flow, and by chemical activation with ZnCl2 and H3PO4 under N2 flow. MB photodegradation was performed under UV and UV-visible irradiation to verify the scaling-up of the present TiO2-AC binary materials. It was verified that oxygenated surface groups on carbon were intrinsically photoactive, and a synergy effect between both solids has been estimated from the first-order apparent rate constants in the photodegradation of MB. This effect enhances the photoactivity of TiO2 up to a factor of about 9 under visible irradiation, and it was associated to the surface properties of AC.

Interaction mechanism between TiO2 and activated carbon.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Acosta-Silva YJ, Nava R, Hernández-Morales V, Macías-Sánchez SA, Gómez-Herrera ML, Pawelec B (2011) Methylene blue photodegradation over titania-decorated SBA-15. Appl Catal B Environ 110:108–117

    Article  CAS  Google Scholar 

  • Andreozzi R, Caprio V, Insola A, Marotta R (1999) Advanced oxidation processes (AOP) for water purification and recovery. Catal Today 53:51–55

    Article  CAS  Google Scholar 

  • Ania CO, Velasco LF, Valdes-Solis T (2012) Photochemical response of carbon materials. In: Tascon JMD (ed) Novel Carbon Adsorbents. Elsevier, London, pp 521–547

    Chapter  Google Scholar 

  • Bandosz TJ, Matos J, Seredych M, Islam MSZ, Alfanoc R (2012) Photoactivity of S-doped nanoporous activated carbons: a new perspective for harvesting solar energy on carbon-based semiconductors. Appl Catal A Gen 445–446:159–165

    Article  Google Scholar 

  • Carvalho HWP, Batista APL, Hammer P, Ramalho TC (2010) Photocatalytic degradation of methylene blue by TiO2-Cu thin films: theoretical and experimental study. J Hazard Mater 184:273–280

    Article  CAS  Google Scholar 

  • Cordero T, Chovelon JM, Duchamp C, Ferronato C, Matos J (2007a) Surface nano-aggregation and photocatalytic activity of TiO2 on H-type activated carbons. Appl Catal B Environ 73:227–235

    Article  CAS  Google Scholar 

  • Cordero T, Chovelon JM, Duchamp C, Ferronato C, Matos J (2007b) Influence of L-type activated carbons on photocatalytic activity of TiO2 in 4-chlorophenol photodegradation. J Photochem Photobiol A Chem 191:122–131

    Article  CAS  Google Scholar 

  • Herrmann JM, Didier J, Pichat P (1984) Effect of chromium doping on the electrical and catalytic properties of powder titania under UV and visible illumination. Chem Phys Lett 108:618–622

    Article  CAS  Google Scholar 

  • Herrmann JM, Guillard C, Pichat P (1993) Heterogeneous photocatalysis: an emerging technology for water treatment. Catal Today 17:7–20

    Article  CAS  Google Scholar 

  • Houas A, Lachheb H, Ksibi M, Elaloui E, Guillard C, Herrmann JM (2001) Photocatalytic degradation pathway of methylene blue in water. Appl Catal B Environ 31:145–157

    Article  CAS  Google Scholar 

  • Inagaki M, Nonaka M, Kojin F, Tsumura T, Toyoda M (2006) Cyclic performance of carbon-coated TiO2 for photocatalytic activity of methylene blue decomposition. Environ Technol 27:521–528

    Article  CAS  Google Scholar 

  • Laine J, Yunes S (1992) Effect of the preparation method on the pore size distribution of activated carbon from coconut shell. Carbon 30:601–604

    Article  CAS  Google Scholar 

  • Laine J, Calafat A, Labady M (1989) Preparation and characterization of activated carbons from coconut shell impregnated with phosphoric acid. Carbon 27:191–195

    Article  CAS  Google Scholar 

  • Legrini O, Oliveros E (1993) Photochemical processes for water treatment. Chem Rev 93:671–698

    Article  CAS  Google Scholar 

  • Matos J, Laine J, Herrmann JM (1998) Synergy effect in the photocatalytic degradation of phenol on a suspended mixture of titania and activated carbon. Appl Catal B Environ 18:281–291

    Article  CAS  Google Scholar 

  • Matos J, Laine J, Herrmann JM (2001) Effect of the type of activated carbons on the photocatalytic degradation of aqueous organic pollutants by UV-irradiated titania. J Catal 200:10–20

    Article  CAS  Google Scholar 

  • Matos J, Labady M, Albornoz A, Laine J, Brito JL (2004) Topological organization and textural changes of carbon macro-networks submitted to activation with N2 and CO2. J Mater Sci 39:3705–3716

    Article  CAS  Google Scholar 

  • Matos J, Laine J, Herrmann JM, Uzcategui D, Brito JL (2007) Influence of activated carbon upon titania on aqueous photocatalytic consecutive runs of phenol photodegradation. Appl Catal B Environ 70:461–469.

  • Matos J, García A, Cordero T, Chovelon JM, Ferronato C (2009) Eco-friendly TiO2-AC photocatalyst for the selective photooxidation of 4-chlorophenol. Catal Lett 130:568–574

    Article  CAS  Google Scholar 

  • Matos J, García A, Poon PS (2010a) Environmental green chemistry applications of nanoporous carbons. J Mater Sci 45:4934–4944

    Article  CAS  Google Scholar 

  • Matos J, Garcia A, Zhao L, Titirici MM (2010b) Solvothermal carbon-doped TiO2 photocatalyst for the enhanced methylene blue degradation under visible light. Appl Catal A Gen 390:175–182

    Article  CAS  Google Scholar 

  • Matos J, García-López E, Palmisano L, García A, Marci G (2010c) Influence of activated carbon in TiO2 and ZnO mediated photo-assisted degradation of 2-propanol in gas–solid regime. Appl Catal B Environ 99:170–180

    Article  CAS  Google Scholar 

  • Matos J, Nahas C, Rojas L, Rosales M (2011) Synthesis and characterization of activated carbon from sawdust of Algarroba Wood. 1. Physical activation and pyrolysis. J. Hazard Mater 196:360–369

    Article  CAS  Google Scholar 

  • Matos J, Marino T, Molinari R, García H (2012) Hydrogen photoproduction under visible irradiation of Au-TiO2/activated carbon. Appl Catal A Gen 417–418:263–272

    Article  Google Scholar 

  • Matos J, Hofman M, Pietrzak R (2013) Synergy effect in the photocatalytic degradation of methylene blue on a suspended mixture of TiO2 and N-containing carbons. Carbon 54:460–471

    Article  CAS  Google Scholar 

  • Mrowetz M, Balcerski W, Colussi AJ, Hoffmann MR (2004) Oxidative power of nitrogen-doped TiO2 photocatalysts under visible illumination. J Phys Chem B 108:17269–17273

    Article  CAS  Google Scholar 

  • Peralta-Hernández JM, Manríquez J, Meas-Vong Y, Rodríguez FJ, Chapman TW, Maldonado MI, Godínez LA (2007) Photocatalytic properties of nano-structured TiO2-carbon films obtained by means of electrophoretic deposition. J Hazard Mater 147:588–593

    Article  Google Scholar 

  • Terzyk AP (2001) The influence of activated carbon surface chemical composition on the adsorption of acetaminophen (paracetamol) in vitro: Part II. TG, FTIR, and XPS analysis of carbons and the temperature dependence of adsorption kinetics at the neutral pH. Colloids Surf A Physicochem Eng Asp 177:23–45

    Article  CAS  Google Scholar 

  • Torimoto T, Okawa Y, Takeda N, Yoneyama H (1997) Effect of activated carbon content in TiO2-loaded activated carbon on photodegradation behaviours of dichloromethane. J Photochem Photobiol A Chem 103:153–157

    Article  CAS  Google Scholar 

  • Velasco LF, Fonseca IM, Parra JB, Lima JC, Ania CO (2012) Photochemical behaviour of activated carbons under UV irradiation. Carbon 50:249–258

    Article  CAS  Google Scholar 

  • Velasco LF, Maurino V, Laurenti E, Ania CO (2013) Light-induced generation of radicals on semiconductor-free carbon photocatalysts. Appl Catal A Gen 453:310–315

    Article  CAS  Google Scholar 

  • Vinodgopal K, Wynkoop DE, Kamat PV (1996) Environmental photochemistry on semiconductor surfaces: photosensitized degradation of a textile azo dye, Acid Orange 7 on TiO2 particles using visible light. Environ Sci Technol 30:1660–1666

    Article  CAS  Google Scholar 

  • Wang W, Gomes C, Faria JL (2007) Photocatalytic degradation of chromotrope 2R using nanocrystalline TiO2/activated-carbon composite catalysts. Appl Catal B Environ 70:470–478

    Article  CAS  Google Scholar 

  • Yan X, Ohno T, Nishijima K, Abe R, Ohtani B (2006) Is methylene blue an appropriate substrate for a photocatalytic activity test? A study with visible-light responsive titania. Chem Phys Lett 429:606–610

  • Zhang H, Lv XJ, Li YM, Wang Y, Li JH (2010) P25-graphene composite as a high performance photocatalyst. ACS Nano 4:380–386

    Article  CAS  Google Scholar 

Download references

Acknowledgments

J. Matos thanks the Venezuelan Ministry of Science, Technology and Innovation for the financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan Matos.

Additional information

Responsible editor: Philippe Garrigues

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Matos, J., Montaña, R. & Rivero, E. Influence of activated carbon upon the photocatalytic degradation of methylene blue under UV–vis irradiation. Environ Sci Pollut Res 22, 784–791 (2015). https://doi.org/10.1007/s11356-014-2832-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-014-2832-9

Keywords

Navigation