Advertisement

Environmental Science and Pollution Research

, Volume 21, Issue 14, pp 8525–8533 | Cite as

Oxidation of artificial sweetener sucralose by advanced oxidation processes: a review

  • Virender K. SharmaEmail author
  • Mehmet Oturan
  • Hyunook Kim
Electrochemical advanced oxidation processes for removal of toxic/persistent organic pollutants from water

Abstract

Sucralose, a chlorinated carbohydrate, has shown its increased use as an artificial sweetener and persistently exists in wastewater treatment plant effluents and aquatic environment. This paper aims to review possible degradation of sucralose and related carbohydrates by biological, electrochemical, chemical, and advanced oxidation processes. Biodegradation of sucralose in waterworks did not occur significantly. Electrochemical oxidation of carbohydrates may be applied to seek degradation of sucralose. The kinetics of the oxidation of sucralose and the related carbohydrates by different oxidative species is compared. Free chlorine, ozone, and ferrate did not show any potential to degrade sucralose in water. Advanced oxidation processes, generating highly strong oxidizing agent hydroxyl radicals (OH), have demonstrated effectiveness in transforming sucralose in water. The mechanism of oxidation of sucralose by OH is briefly discussed.

Keywords

Degradation Carbohydrates Saccharides Sugars Electrochemical oxidation Ozonation Hydroxyl radical Ferrate 

Notes

Acknowledgment

V.K. Sharma thanks the United States National Science Foundation for ferrate research (CBET 1236331).

References

  1. Anquandah GAK, Sharma VK, Knight DA, Batchu SR, Gardinali PR (2011) Oxidation of trimethoprim by ferrate(VI): kinetics, products, and antibacterial activity. Environ Sci Technol 45:10575–10581CrossRefGoogle Scholar
  2. Anquandah GAK, Sharma VK, Panditi VR, Gardinali PR, Kim H, Oturan MA (2013) Ferrate(VI) oxidation of propranolol: kinetics and products. Chemosphere 91:105–109CrossRefGoogle Scholar
  3. Aoun S, Bang GS, Koga T, Nonaka Y, Sotomura T, Taniguchi I (2003) Electrocatalytic oxidation of sugars on silver-UPD single crystal gold electrodes in alkaline solutions. Electrochem Commun 5:317–320CrossRefGoogle Scholar
  4. Arvinte A, Sesay A, Virtanen V (2011) Carbohydrates electrocatalytic oxidation using CNT-NiCo-oxide modified electrodes. Talanta 84:180–186CrossRefGoogle Scholar
  5. Barbier M, Breton T, Servat K, Grand E, Kokoh B, Kovensky J (2006) Selective TEMPO-catalyzed chemicals vs. electrochemical oxidation of carbohydrate derivatives. J Carbohydr Chem 25:253–266CrossRefGoogle Scholar
  6. Bennett D (2013) The intense sweetener world, Ehrenberg center for research in marketing. (http://www.lsbu.ac.uk/bus-ehrenberg/documents/High%20Intensity%20Sweeteners.pdf. Accessed on 28 May 2013
  7. Brusick D, Grotz VL, Slesinski R, Kruger CL, Hayes AW (2010) The absence of genotoxicity of sucralose. Food Chem Toxicol 48:3067–3072CrossRefGoogle Scholar
  8. Buerge IJ, Keller M, Buser H-R, Müller MD, Poiger T (2011) Saccharin and other artificial sweeteners in soils: estimated inputs from agriculture and households, degradation, and leaching to groundwater. Environ Sci Technol 45:615–621CrossRefGoogle Scholar
  9. Casbeer EM, Sharma VK, Zajickova Z, Dionysiou DD (2013) Kinetics and mechanism of oxidation of tryptophan by ferrate(VI). Environ Sci Technol 47:4572–4580CrossRefGoogle Scholar
  10. Das D, Sen PK, Das K (2007) Carbohydrate electro-oxidation on chemically prepared MnO2. J Electroanal Chem 611:19–25CrossRefGoogle Scholar
  11. Ferrer I, Thurman EM (2010) Analysis of sucralose and other sweeteners in water and beverage samples by liquid chromatography/time-of-flight mass spectrometry. J Chromatogr A 1217:4127–4134CrossRefGoogle Scholar
  12. Grice HC, Goldsmith LA (2000) Sucralose—an overview of the toxicity data. Food Chem Toxicol 38:S1–S36CrossRefGoogle Scholar
  13. Grotz VL, Munro IC (2009) An overview of the safety of sucralose. Regul Toxicol Pharmacol 55:1–5CrossRefGoogle Scholar
  14. Hayashi T, Sakurada I, Honda K, Motohashi S, Uchikura K (2012) Electrochemical detection of sugar-related compounds using boron-doped diamond electrodes. Anal Sci 28:127–134CrossRefGoogle Scholar
  15. Hoigne J, Bader H (1994) Kinetics of reactions of chlorine dioxide (OClO) in water—I. Rate constants for inorganic and organic compounds. Water Res 28:45–55CrossRefGoogle Scholar
  16. Hollender J, Zimmermann SG, Koepke S, Krauss M, Mcardell CS, Ort C, Singer H, Von Gunten U, Siegrist H (2009) Elimination of organic micropollutants in a municipal wastewater treatment plant upgraded with a full-scale post-ozonation followed by sand filtration. Environ Sci Technol 43:7862–7869CrossRefGoogle Scholar
  17. Hung C-C, Tang D, Warnken KW, Santschi PH (2001) Distributions of carbohydrates, including uronic acids, in estuarine waters of Galveston Bay. Mar Chem 73:305–318CrossRefGoogle Scholar
  18. Jenner M, Smithson A (1989) Physicochemical properties of the sweetener sucralose. J Food Sci 54:1646–1649CrossRefGoogle Scholar
  19. Jiang JQ (2007) Research progress in the use of ferrate(VI) for the environmental remediation. J Hazard Mater 146:617–623CrossRefGoogle Scholar
  20. Jiang JQ, Zhou Z (2013) Removal of pharmaceutical residues by ferrate(VI). PLoS ONE 8:e55729CrossRefGoogle Scholar
  21. Jiang JQ, Yin Q, Zhou JL, Pearce P (2005) Occurrence and treatment trials of endocrine disrupting chemicals (EDCs) in wastewaters. Chemosphere 61:544–550CrossRefGoogle Scholar
  22. Jiang JQ, Wang S, Panagoulopoulos A (2006) The exploration of potassium ferrate(VI) as a disinfectant/coagulant in water and wastewater treatment. Chemosphere 63:212–219CrossRefGoogle Scholar
  23. Jiang JQ, Stanford C, Alsheyab M (2009) The online generation and application of ferrate(VI) for sewage treatment-a pilot scale trial. Sep Purif Technol 68:227–231CrossRefGoogle Scholar
  24. Jiang JQ, Zhou Z, Pahl O (2012) Preliminary study of ciprofloxacin (cip) removal by potassium ferrate(VI). Sep Purif Technol 88:95–98CrossRefGoogle Scholar
  25. Jiang JQ, Zhou Z, Patibandla S, Shu X (2013) Pharmaceutical removal from wastewater by ferrate(VI) and preliminary effluent toxicity assessments by the zebrafish embryo model. Microchem J 110:239–245CrossRefGoogle Scholar
  26. Kee OS, Linden KG (2013) Re-engineering an artificial sweeteners: transforming sucralose residuals in water via advanced oxidation. Environ Sci Technol 47:6799–6805Google Scholar
  27. Kimmel WK, LeBlanc G, Meschievitz ME, Cliffel DE (2012) Electrochemical sensor and biosensors. Anal Chem 84:685–707CrossRefGoogle Scholar
  28. Kokotou MG, Asimakopoulos AG, Thomaidis NS (2012) Artificial sweeteners as emerging pollutants in the environment: analytical methodologies and environmental impact. Anal Methods 4:3057–3070CrossRefGoogle Scholar
  29. Labare MP, Alexander M (1994) Microbial cometabolism of sucralose, a chlorinated disaccharide, in environmental samples. Appl Microbiol Biotechnol 42:173–178CrossRefGoogle Scholar
  30. Lange FT, Scheurer M, Brauch H-J (2012) Artificial sweeteners—a recently recognized class of emerging environmental contaminants: a review. Anal Bioanal Chem 403:2503–2518CrossRefGoogle Scholar
  31. Lapin-Scott HM, Holt G, Bull AT (1987) Microbial transformation of 1,6-dichloro-1,6-didideoxy-β, d-fructofuranosyl-4-chloro-4-deoxy-α, d-galactopyranoside (TGS) by soil populations. J Appl Microbiol 3:95–102Google Scholar
  32. Lee Y, von Gunten U (2010) Oxidative transformation of micropollutants during municipal wastewater treatment: comparison of kinetic aspects of selective (chlorine, chlorine dioxide, ferrateVI, and ozone) and non-selective oxidants (hydroxyl radical). Water Res 44:555–566CrossRefGoogle Scholar
  33. Lee Y, Escher BI, von Gunten U (2008) Efficient removal of estrogenic activity during oxidative treatment of waters containing steroid estrogens. Environ Sci Technol 42:6333–6339CrossRefGoogle Scholar
  34. Lee Y, Zimmermann SG, Kieu AT, von Gunten U (2009) Ferrate (Fe(VI)) application for municipal wastewater treatment: a novel process for simultaneous micropollutant oxidation and phosphate removal. Environ Sci Technol 43:3831–3838CrossRefGoogle Scholar
  35. Lillicrap A, Langford K, Tollefsen KE (2011) Bioconcentration of the intense sweetener sucralose in a multitrophic battery of aquatic organisms. Environ Toxicol Chem 30:673–681CrossRefGoogle Scholar
  36. Loos R, Gawlik BM, Boettcher K, Locoro G, Contini S, Bidoglio G (2009) Sucralose screening in European surface waters using a solid-phase extraction-liquid chromatography-triple quadrupole mass spectrometry method. J Chromatogr A 1216:1126–1131CrossRefGoogle Scholar
  37. Mawhinney DB, Young RB, Vanderford BJ, Borch T, Snyder SA (2011) Artificial sweetener sucralose in U.S. drinking water systems. Environ Sci Technol 45:8716–8722CrossRefGoogle Scholar
  38. Mead RN, Morgan JB, Avery GB Jr, Kieber RJ, Kirk AM, Skrabal SA, Willey JD (2009) Occurrence of the artificial sweetener sucralose in coastal and marine waters of the United States. Mar Chem 116:13–17CrossRefGoogle Scholar
  39. Minten J, Adolfsson-Erici M, Björlenius B, Alsberg T (2011) A method for the analysis of sucralose with electrospray LC/MS in recipient waters and in sewage effluent subjected to tertiary treatment technologies. Int J Environ Anal Chem 91:357–366CrossRefGoogle Scholar
  40. Myers RL (2007) The 100 most important chemical compounds: a reference guide. Greenwood Publishing Group, WestportGoogle Scholar
  41. NIST Chemical Kinetics Database. Standard Reference Database 17, Version 7.0 (Web Version), Release1.6.7 Data Version 03.2013Google Scholar
  42. Navalon S, Alvaro M, Garcia H (2008) Carbohydrates as trihalomethanes precursors. Influence of pH and the presence of Cl− and Br− on trihalomethane formation potential. Water Res 42:3990–4000CrossRefGoogle Scholar
  43. Neset TSS, Singer H, Longrée P, Bader H-P, Scheidegger R, Wittmer A, Andersson JCM (2010) Understanding consumption-related sucralose emissions—a conceptual approach combining substance-flow analysis with sampling analysis. Sci Total Environ 408:3261–3269CrossRefGoogle Scholar
  44. Parpot P, Nunes N, Bettencourt AP (2006) Electrocatalytic oxidation of monosaccharides on gold electrode in alkaline medium: structure-reactivity relationship. J Electroanal Chem 596:65–73CrossRefGoogle Scholar
  45. Parpot P, Servat K, Bettencourt AP, Huser H, Kokoh KB (2010) TEMPO mediated oxidation of carbohydrates using electrochemical methods. Cellulose 17:815–824CrossRefGoogle Scholar
  46. Prucek R, Tuček, Kolařík J, Filip J, Marušák Z, Sharma VK, Zbořil R (2013) Ferrate(VI)-induced arsenite and arsenate removal by in situ structural incorporation into magnetic iron(III) oxide nanoparticles. Environ Sci Technol 47:3283–3292Google Scholar
  47. Richardson SD, Ternes TA (2011) Water analysis: emerging contaminants and current issues. Anal Chem 83:4616–4648CrossRefGoogle Scholar
  48. Robers A, Renwick AG, Sims J, Snodin DJ (2000) The metabolic fate of sucralose in rats. Food Chem Toxicol 38(Suppl 2):S31–S41CrossRefGoogle Scholar
  49. Scheurer M, Brauch H-J, Lange FT (2009) Analysis and occurrence of seven sweeteners in German wastewater and surface water and in soil treatment (SAT). Anal Bioanal Chem 394:1585–1594CrossRefGoogle Scholar
  50. Scheurer M, Storck R, Brauch H-J, Lange FT (2010) Performance of conventional multi-barrier drinking water treatment plants for the removal of four artificial sweeteners. Water Res 44:3573–3584CrossRefGoogle Scholar
  51. Sharma VK (2013) Ferrate(VI) and ferrate(V) oxidation of organic compounds: kinetics and mechanism. Coord Chem Rev 257:495–510CrossRefGoogle Scholar
  52. Sharma VK, Li XZ, Graham N, Doong RA (2008) Ferrate(VI) oxidation of endocrine disruptors and antimicrobials in water. J Water Supply Res Technol AQUA 57:419–426CrossRefGoogle Scholar
  53. Sharma VK, Sohn M, Anquandah GAK, Nesnas N (2012) Kinetics of the oxidation of sucralose and related carbohydrates by ferrate(VI). Chemosphere 87:644–648CrossRefGoogle Scholar
  54. Sharma VK, Liu F, Tolan S, Sohn M, Kim H, Oturan MA (2013) Oxidation of β-lactam antibiotics by ferrate(VI). Chem Eng J 221:446–451CrossRefGoogle Scholar
  55. Sigleo AC (1996) Biochemical components in suspended particles and colloids: carbohydrates in the Potomac and Patuxent estuaries. Org Geochem 24:83–93CrossRefGoogle Scholar
  56. Soh L, Connors KA, Brooks BW, Zimmerman J (2011) Fate of sucralose through environmental and water treatment processes and impact on plant indicator species. Environ Sci Technol 45:1363–1369CrossRefGoogle Scholar
  57. Stenman D, Carlsson M, Jonsson M, Reitberger T (2003) Reactivity of the carbonate radical anion towards carbohydrate and lignin model compounds. J Wood Chem Technol 23:47–69CrossRefGoogle Scholar
  58. Tollefsen KE, Nizzetto L, Huggett DB (2012) Presence, fate and effects of the intense sweetener sucralose in the aquatic environment. Sci Total Environ 438:510–516CrossRefGoogle Scholar
  59. Torres CI, Ramakrishna S, Chiu C-A, Nelson KG, Westerhoff P, Krajmalnik-Brown R (2011) Fate of sucralose during wastewater treatment. Environ Eng Sci 28:325–331CrossRefGoogle Scholar
  60. Toth JE, Rickman KA, Venter AR, Kiddle JJ, Mezyk SP (2012) Reaction kinetics and efficiencies for the hydroxyl and sulfate radical based oxidation of artificial sweeteners in water. J Phys Chem A 116:9819–9824CrossRefGoogle Scholar
  61. Viberg H, Fredriksson A (2011) Neonatal exposure to sucralose does not alter biochemical markers of neuronal development or adult behavior. Nutrition 27:81–85CrossRefGoogle Scholar
  62. Wiklund AKE, Breitholtz M, Bengtsson B-E, Adolfsson-Erici M (2012) Sucralose—an ecotoxicological challenger? Chemosphere 86:50–55CrossRefGoogle Scholar
  63. Yamazaki S, Fujiwara N, Takeda S, Yasuda (2010) Electrochemical oxidation of sugars at moderate potentials catalyzed by Rh porphyrins. Chem Commun 46:3607–3609CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Virender K. Sharma
    • 1
    Email author
  • Mehmet Oturan
    • 2
  • Hyunook Kim
    • 3
  1. 1.Department of Environmental and Occupational Health, School of Public HealthTexas A&M UniversityCollege StationUSA
  2. 2.Laboratoire Géomatériaux et Environnement (LGE), EA 4508Université Paris-Est, UPEMMarne-la-ValléeFrance
  3. 3.Department of Environmental EngineeringThe University of SeoulSeoulSouth Korea

Personalised recommendations