Skip to main content

Advertisement

Log in

Remediation of phenanthrene-contaminated soil by simultaneous persulfate chemical oxidation and biodegradation processes

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous compounds with carcinogenic and/or mutagenic potential. To address the limitations of individual remediation techniques and to achieve better PAH removal efficiencies, the combination of chemical and biological treatments can be used. The degradation of phenanthrene (chosen as a model of PAH) by persulfate in freshly contaminated soil microcosms was studied to assess its impact on the biodegradation process and on soil properties. Soil microcosms contaminated with 140 mg/kgDRY SOIL of phenanthrene were treated with different persulfate (PS) concentrations 0.86–41.7 g/kgDRY SOIL and incubated for 28 days. Analyses of phenanthrene and persulfate concentrations and soil pH were performed. Cultivable heterotrophic bacterial count was carried out after 28 days of treatment. Genetic diversity analysis of the soil microcosm bacterial community was performed by PCR amplification of bacterial 16S rDNA fragments followed by denaturing gradient gel electrophoresis (DGGE). The addition of PS in low concentrations could be an interesting biostimulatory strategy that managed to shorten the lag phase of the phenanthrene biological elimination, without negative effects on the physicochemical and biological soil properties, improving the remediation treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Anipsitakis GP, Dionysiou DD (2004) Radical generation by the interaction of transition metals with common oxidants. Environ Sci Technol 38:3705–3712

    Article  CAS  Google Scholar 

  • Bosio GN, David Gara PM, García Einschlag FS, Gonzalez MC, Del Panno MT, Mártire DO (2008) Photodegradation of soil organic matter and its effect on Gram-negative bacterial growth. Photochem Photobiol 84:1126–1132

    Article  CAS  Google Scholar 

  • Coppotelli BM, Ibarrolaza A, Del Panno MT, Morelli IS (2008) Effects of the inoculant strain Sphingomonas paucimobilis 20006FA on soil bacterial community biodegradation in phenanthrene-contaminated soil. Microb Ecol 55:173–183

    Article  CAS  Google Scholar 

  • Couling NR, Towell MG, Semple KT (2010) The simultaneous effects of PAH concentration, contaminant mixture and repeated application on the development of catabolic activity in soil. Environ Pollut 158:3411–3420

    Article  CAS  Google Scholar 

  • David Gara PM, Bosio GN, Gonzalez MC, Mártire DO (2008) Kinetics of the sulfate radical-mediated photo-oxidation of humic substances. In J Chem Kinet 40:19–24

    Article  Google Scholar 

  • Ferrarese E, Andreottola G, Oprea IA (2008) Remediation of PAH-contaminated sediments by chemical oxidation. J Hazard Mater 152:128–139

    Article  CAS  Google Scholar 

  • Foth HD (1990) Fundamentals of soil science. Wiley, New York, ISBN 0-471-26792-9

    Google Scholar 

  • Fromin N, Hamelin J, Tarnawski S, Roesti D, Jourdain-Miserez K, Forestier N, Teyssier-Cuvelle S, Gillet F, Aragno M, Rossi P (2002) Statistical analysis of denaturing gel electrophoresis (DGGE) fingerprinting patterns. Environ Microbiol 4:634–643

    Article  CAS  Google Scholar 

  • Gan S, Lau EV, Ng HK (2009) Remediation of soils contaminated with polycyclic aromatic hydrocarbons (PAHs). J Hazard Mater 172:532–549

    Article  CAS  Google Scholar 

  • House DA (1962) Kinetics and mechanism of oxidations by peroxydisulfate. Chem Rev 62:185–203, 1962

    Article  CAS  Google Scholar 

  • Huang KC, Zhao Z, Hoag GE, Dahmani A, Block PA (2005) Degradation of volatile organic compounds with thermally activated peroxydisulfate oxidation. Chemosphere 61:551–560

    Article  CAS  Google Scholar 

  • Johnson RL, Tratnyek PG, Johnson RB (2008) Persulfate persistence under thermal activation conditions. Environ Sci Technol 42:9350–9356

    Article  CAS  Google Scholar 

  • Kulik N, Goia A, Trapido M, Tuhkanen T (2006) Degradation of polycyclic aromatic hydrocarbons by combined chemical. J Environ Manag 78:382–391

    Article  CAS  Google Scholar 

  • Laurent F, Cébron A, Schwartz C, Leyval C (2012) Oxidation of a PAH polluted soil using modified Fenton reaction in unsaturated condition affects biological and physico-chemical properties. Chemosphere 86:659–664

    Article  CAS  Google Scholar 

  • Lee B-D, Homosi M (2001) A hybrid Fenton oxidation-microbial treatment for soil highly contaminated with benz(a)anthracene. Chemosphere 43:1127–1132

    Article  CAS  Google Scholar 

  • Lemaire J, Buès M, Kabeche T, Hanna K, Simonnot M-O (2013) Oxidant selection to treat an aged PAH contaminated soil by in situ chemical oxidation. J Environ Chem Eng 1:1261–1268

    Article  CAS  Google Scholar 

  • Liang CJ, Bruell CJ, Marley MC, Sperry KL (2003) Thermally activated persulfate oxidation of trichloroethylene (TCE) and 1,1,1-trichloroethane (TCA) in aqueous systems and soil slurries. Soil Sediment Contam 12:207–228

    Article  CAS  Google Scholar 

  • Liang CJ, Bruell CJ, Marley MC, Sperry KL (2004) Persulfate oxidation for in situ remediation of TCE. II. Activated by chelated ferrous ion. Chemosphere 55:1225–1233

    Article  CAS  Google Scholar 

  • Liang C, Huang CF, Mohanty N, Kurakalva RM (2008) A rapid spectrophotometric determination of persulfate anion in ISCO. Chemosphere 73:1540–1543

    Article  CAS  Google Scholar 

  • Luque-García JL, Luque de Castro MD (2003) Ultrasound: a powerful tool for leaching. Trends Anal Chem 22:41–47

    Article  Google Scholar 

  • Mora VC, Rosso JA, Carrillo Le Roux G, Mártire DO, Gonzalez MC (2009) Thermally activated peroxydisulfate in the presence of additives: a clean method for the degradation of pollutants. Chemosphere 75:1405–1409

    Article  CAS  Google Scholar 

  • Muyzer G, Brinkhoff T, Nübel U, Santegoedes C, Schäfer H, Wawer C (1998) Molecular microbial ecology manual. In: Akkermanns ADL, van Elsas JD, de Brujin F. Kluwer Academic Press (ed) Denaturing gradient electrophoresis (DGGE) in microbial ecology, Dordrecht, pp 1-27

  • Osgerby IT (2006) ISCO technology overview: do you really understand the chemistry? In: Calabrese EJ, Kostecki PT Dragun J (eds) Contaminated soils, sediments and water. Springer, New York, pp 287–308

    Chapter  Google Scholar 

  • Palmroth MRT, Langwaldt JH, Aunola TA, Goi A, Munster U, Puhakka JA, Tuhkanen TA (2006) Effect of modified Fenton’s reaction on microbial activity and removal of PAHs in creosote oil contaminated soil. Biodegradation 17:131–141

    Article  CAS  Google Scholar 

  • Reasoner D, Geldreich E (1985) A new medium for the enumeration and subculture of bacteria from potable water. Appl Environ Microbiol 49:1–7

    CAS  Google Scholar 

  • Richardson SD, Lebron BL, Miller C, Aitken M (2011) Recovery of phenanthrene-degrading bacteria after simulated in situ persulfate oxidation in contaminated soil. Environ Sci Technol 45:719–725

    Article  CAS  Google Scholar 

  • Rosso JA, Allegretti P, Mártire DO, Gonzalez MC (1999) Reaction of sulphate and phosphate radicals with α, α, α-trifluorotoluene. J Chem Soc Perkin Trans 2:205–210

    Article  Google Scholar 

  • Setia R, Marschner P, Baldock JS, Chittleborough DJ, Smith P, Smith J (2011) Salinity effects on carbon mineralization in soils of varying texture. Soil Biol Biochem 43:1908–1916

    Article  CAS  Google Scholar 

  • Sirguey C, Silva P, Schwartz C, Simonnot MO (2008) Impact of chemical oxidation on soil quality. Chemosphere 72:282–289

    Article  CAS  Google Scholar 

  • Sokal RR, Michener CD (1958) A statistical methods for evaluating systematic relationships. Univ Kans Sci Bull 38:1409–1438

    Google Scholar 

  • Song G, Lu C, Lin JM (2007) Application of surfactants and microemulsions to the extraction of pyrene and phenanthrene from soil with three different extraction methods. Anal Chim Acta 596:312–318

    Article  CAS  Google Scholar 

  • Sutton NB, Grotenhuis JTC, Langenhoff AAM, Rijnaarts HHM (2011) Efforts to improve coupled in situ chemical oxidation with bioremediation: a review of optimization strategies. J Soils Sediments 11:129–140

    Article  CAS  Google Scholar 

  • Trevors JT (1996) Sterilization and inhibition of microbial activity in soil. J Microbiol Meth 26:53–59

    Article  CAS  Google Scholar 

  • Tsitonaki A, Smets BF, Bjerg PL (2008) Effects of heat-activated persulfate oxidation on soil microorganisms. Water Res 42:1013–1022

    Article  CAS  Google Scholar 

  • Tsitonaki A, Petri B, Crimi M, Mosbk H, Siegrist R, Bjerg PL (2010) In situ chemical oxidation of contaminated soil and groundwater using persulfate: a review. Crit Rev Environ Sci Technol 40:55–91

    Article  CAS  Google Scholar 

  • Wardman P (1989) Reduction potentials of one-electron couples involving free radicals in aqueous solution. J Phys Chem Ref Data 18:1637–1755

    Article  CAS  Google Scholar 

  • Wichern J, Wichern F, Joergensen RG (2006) Impact of salinity on soil microbial communities and the decomposition of maize in acidic soils. Geoderma 137:100–108

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was partially supported by the Agencia Nacional de Promoción Científica y Tecnológica (PICT 2010-0366). Mora V. C. and Rosso J. A. are research members of CONICET (Consejo Nacional de Investigaciones Científicas y Técnicas., Argentina), and Morelli I. S. is research member of CIC-PBA (Comisión de Investigaciones Científicas de la Provincia de Buenos Aires, Argentina). Madueño L. and Peluffo M. are doctoral fellows of CONICET.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Janina A. Rosso.

Additional information

Responsible editor: Gerald Thouand

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mora, V.C., Madueño, L., Peluffo, M. et al. Remediation of phenanthrene-contaminated soil by simultaneous persulfate chemical oxidation and biodegradation processes. Environ Sci Pollut Res 21, 7548–7556 (2014). https://doi.org/10.1007/s11356-014-2687-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-014-2687-0

Keywords

Navigation