Skip to main content

Advertisement

Log in

Brain glutathione redox system significance for the control of silica-coated magnetite nanoparticles with or without mercury co-exposures mediated oxidative stress in European eel (Anguilla anguilla L.)

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

This in vitro study investigates the impact of silica-coated magnetite particles (Fe3O4@SiO2/SiDTC, hereafter called IONP; 2.5 mg L−1) and its interference with co-exposure to persistent contaminant (mercury, Hg; 50 μg L−1) during 0, 2, 4, 8, 16, 24, 48, and 72 h on European eel (Anguilla anguilla) brain and evaluates the significance of the glutathione (GSH) redox system in this context. The extent of damage (membrane lipid peroxidation, measured as thiobarbituric acid reactive substances, TBARS; protein oxidation, measured as reactive carbonyls, RCs) decreased with increasing period of exposure to IONP or IONP + Hg which was accompanied with differential responses of glutathione redox system major components (glutathione reductase, GR; glutathione peroxidase, GPX; total GSH, TGSH). The occurrence of antagonism between IONP and Hg impacts was evident at late hour (72 h), where significantly decreased TBARS and RC levels and GR and glutathione sulfo-transferase (GST) activity imply the positive effect of IONP + Hg concomitant exposure against Hg-accrued negative impacts [vs. early (2 h) hour of exposure]. A period of exposure-dependent IONP alone and IONP + Hg joint exposure-accrued impact was perceptible. Additionally, increased susceptibility of the GSH redox system to increased period of exposure to Hg was depicted, where insufficiency of elevated GR for the maintenance of TGSH required for membrane lipid and cellular protein protection was displayed. Overall, a fine-tuning among brain glutathione redox system components was revealed controlling IONP + Hg interactive impacts successfully.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Ahamed M, Alhadlaq HA, Khan MM, Akhtar MJ (2013) Selective killing of cancer cells by iron oxide nanoparticles mediated through reactive oxygen species via p53 pathway. J Nanoparticle Res 15:1225

    Article  Google Scholar 

  • Ahmad I, Coelho JP, Mohmood I, Anjum NA, Pacheco M et al (2012) Mercury contaminated systems under recovery can represent an increased risk to seafood human consumers—a paradox depicted in bivalves’ body burdens. Food Chem 133:665–670

    Article  CAS  Google Scholar 

  • Anjum NA, Singh N, Singh MK, Shah ZA et al (2013) Single-bilayer graphene oxide sheet tolerance and glutathione redox system significance assessment in faba bean (Vicia faba L.). J Nanoparticle Res 15:1770

    Article  Google Scholar 

  • APHA (American Public Health Association) (1998) In: Clesceri LS, Greenberg AE, Eaton AD (eds) Standard methods for the examination of water and wastewater, 20th edn. Animal Public Health Association, APHA, Washington, DC

    Google Scholar 

  • Auffan M, Rose J, Proux O, Masion A, Liu W, Benameur L et al (2012) Is there a trojan-horse effect during magnetic nanoparticles and metalloid cocontamination of human dermal fibroblasts? Environ Sci Technol 46:10789–10796

    Article  CAS  Google Scholar 

  • Beutler E (1984) A manual of biochemical methods. Grune and Stratlon, Orlando, pp 74–76

    Google Scholar 

  • Brunner TJ, Wick P, Manser P, Spohn P, Grass RN et al (2006) In vitro cytotoxicity of oxide nanoparticles: comparison to asbestos, silica, and the effect of particle solubility. Environ Sci Technol 40:4374–4381

    Article  CAS  Google Scholar 

  • Carlberg I, Mannervik B (1975) Purification and characterization of the flavoenzyme glutathione reductase from rat liver. J Biol Chem 250:5475–5480

    CAS  Google Scholar 

  • Corr SA, Rakovich YP, Gun’ko YK (2008) Multifunctional magnetic-fluorescent nanocomposites for biomedical applications. Nanoscale Res Lett 3:87–104

    Article  CAS  Google Scholar 

  • Delay M, Frimmel FH (2012) Nanoparticles in aquatic systems. Anal Bioanal Chem 402:583–592

    Article  CAS  Google Scholar 

  • Dıez S (2009) Human health effects of methylmercury exposure. Rev Environ Contam Toxicol 198:111–132

    Google Scholar 

  • Dringen R (2000) Metabolism and functions of glutathione in brain. Prog Neurobiol 62:649–671

    Article  CAS  Google Scholar 

  • Filipak Neto F, Zanata S, Silva de Assis H, Nakao L et al (2008) Toxic effects of DDT and methyl mercury on the hepatocytes from Hoplias malabaricus. Toxicol In Vitro 22:1705–1713

    Article  CAS  Google Scholar 

  • Franco R, Sánchez-Olea R, Reyes-Reyes EM et al (2009) Environmental toxicity, oxidative stress and apoptosis: menage a trois. Mutat Res 674:3–22

    Article  CAS  Google Scholar 

  • Geeraerts C, Belpaire C (2010) The effects of contaminants in European eel: a review. Ecotoxicology 19:239–266

    Article  CAS  Google Scholar 

  • Girginova PI, Daniel-da-Silva AL, Lopes CB, Figueira P et al (2010) Silica coated magnetite particles for magnetic removal of Hg2+ from water. J Colloid Interface Sci 345:234–240

    Article  CAS  Google Scholar 

  • Habig WH, Pabst MJ, Jakoby WB (1974) Glutathione-S-transferase. The first enzymatic step in mercapturic acid formation. J Biol Chem 249:7130–7139

    CAS  Google Scholar 

  • Hirrlinger J, Dringen R (2010) The cytosolic redox state of astrocytes: maintenance, regulation and functional implications for metabolite trafficking. Brain Res Rev 63:177–188

    Article  CAS  Google Scholar 

  • Huang CZ, Hu B (2008) Silica-coated magnetic nanoparticles modified with γ-mercaptopropyltrimethoxysilane for fast and selective solid phase extraction of trace amounts of Cd, Cu, Hg, and Pb in environmental and biological samples prior to their determination by inductively coupled plasma mass spectrometry. Spectrochim Acta B Atomic Spectrosc 63:437–444

    Article  Google Scholar 

  • Jonker MJ, Svendsen C, Bedaux JJ, Bongers M, Kammenga JE (2005) Significance testing of synergistic/antagonistic, dose level‐dependent, or dose ratio‐dependent effects in mixture dose‐response analysis. Environ Toxicol Chem 24:2701–2713

    Article  CAS  Google Scholar 

  • Levine RL, Williams JA, Stadtman ER, Shacter E (1994) Carbonyl assays for determination of oxidatively modified proteins. Methods Enzymol 233:346–357

    Article  CAS  Google Scholar 

  • Li H, Li Z, Liu T, Xiao X et al (2008) A novel technology for biosorption and recovery hexavalent chromium in wastewater by bio-functional magnetic beads. Bioresour Technol 99:6271–6279

    Article  CAS  Google Scholar 

  • Li H, Zhou Q, Wu Y, Fu J et al (2009) Effects of waterborne nano-iron on medaka (Oryzias latipes): antioxidant enzymatic activity, lipid peroxidation and histopathology. Ecotoxicol Environ Saf 72:684–692

    Article  CAS  Google Scholar 

  • Love SA, Maurer-Jones MA, Thompson JW et al (2012) Assessing nanoparticle toxicity. Annu Rev Anal Chem 5:181–205

    Article  CAS  Google Scholar 

  • Ma P, Luo Q, Chen J, Gan Y, Du J et al (2012) Intraperitoneal injection of magnetic Fe3O4-nanoparticle induces hepatic and renal tissue injury via oxidative stress in mice. Int J Nanomedicine 7:4809–4818

    CAS  Google Scholar 

  • Mahmoudi M, Hofmann H, Rothen-Rutishauser B et al (2011) Assessing the in vitro and in vivo toxicity of superparamagnetic iron oxide nanoparticles. Chem Rev 112:2323–2338

    Article  Google Scholar 

  • Merad-Boudia M, Nicole A, Santiard-Baron D et al (1998) Mitochondrial impairment as an early event in the process of apoptosis induced by glutathione depletion in neuronal cells: relevance to Parkinson’s disease. Biochem Pharmacol 56:645–655

    Article  CAS  Google Scholar 

  • Mieiro C, Ahmad I, Pereira M, Duarte A, Pacheco M (2010) Antioxidant system breakdown in brain of feral golden grey mullet (Liza aurata) as an effect of mercury exposure. Ecotoxicology 19:1034–1045

    Article  CAS  Google Scholar 

  • Nel AE, Xia T, Madler L, Li N (2006) Toxic potential of materials at the nanolevel. Science 311:622–627

    Article  CAS  Google Scholar 

  • Nystrom T (2005) Role of oxidative carbonylation in protein quality control and senescence. EMBO J 24:1311–1317

    Article  Google Scholar 

  • Oliveira M, Santos MA, Gravato C, Pacheco M (2003) Chromium effects on Anguilla anguilla liver organ culture. Fresenius Environ Bull 4:349–352

    Google Scholar 

  • Owens WI, Belcher RV (1965) A colorimetric micro-method for the determination of glutathione. Biochem J 94:705–711

    CAS  Google Scholar 

  • Pato P, Válega M, Pereira E, Vale C, Duarte A (2008) Inputs from a mercury-contaminated lagoon: impact on the nearshore waters of the Atlantic Ocean. J Coast Res 24:28–38

    Article  CAS  Google Scholar 

  • Qiao R, Jia Q, Hüwel S, Xia R, Liu T et al (2012) Receptor-mediated delivery of magnetic nanoparticles across the blood-brain barrier. ACS Nano 6:3304–3310

    Article  CAS  Google Scholar 

  • Radu M, Cristina Munteanu M, Petrache S, Iren Serban A et al (2010) Depletion of intracellular glutathione and increased lipid peroxidation mediate cytotoxicity of hematite nanoparticles in MRC-5 cells. Acta Biochim Pol 57:355–360

    CAS  Google Scholar 

  • Samal NK, Paulraj R (2010) Modulatory role of magnetic iron oxide nanoparticles on oxidative stress in rat. J Bionanosci 4:22–28

    Article  CAS  Google Scholar 

  • Scown TM, van Aerle R, Tyler CR (2010) Do engineered nanoparticles pose a significant threat to the aquatic environment? Crit Rev Toxicol 40:653–670

    Article  CAS  Google Scholar 

  • Shin S, Jang J (2007) Thiol containing polymer encapsulated magnetic nanoparticles as reusable and efficiently separable adsorbent for heavy metal ions. Chem Commun 41:4230–4232

    Article  Google Scholar 

  • Srikanth K, Pereira E, Duarte AC, Ahmad I (2013) Glutathione and its dependent enzymes’ modulatory responses to toxic metals and metalloids in fish—a review. Environ Sci Pollut Res 20:2133–2149

    Article  CAS  Google Scholar 

  • Srinivas A, Rao PJ, Selvam G, Goparaju A et al (2012) Oxidative stress and inflammatory responses of rat following acute inhalation exposure to iron oxide nanoparticles. Hum Exp Toxicol 31:1113–1131

    Article  CAS  Google Scholar 

  • Stringari J, Nunes AK, Franco JL, Bohrer D et al (2008) Prenatal methylmercury exposure hampers glutathione antioxidant system ontogenesis and causes long-lasting oxidative stress in the mouse brain. Toxicol Appl Pharmacol 227:147–154

    Article  CAS  Google Scholar 

  • Tavares DS, Daniel-da-Silva AL, Lopes CB et al (2013) Efficient sorbents based on magnetite coated with siliceous hybrid shells for removal of mercury ions. J Mater Chem A 1:8134

    Article  CAS  Google Scholar 

  • Theng BKG, Yuan G (2008) Nanoparticles in the soil environment. Elements 4:395–399

    Article  CAS  Google Scholar 

  • Ueda S, Masutani H, Nakamura H, Tanaka T, Ueno M, Yodoi J (2002) Redox control of cell death. Antioxid Redox Signal 4:405–414

    Article  CAS  Google Scholar 

  • Üner N, Oruç EÖ, Sevgiler Y, Şahin N et al (2006) Effects of diazinon on acetylcholinesterase activity and lipid peroxidation in the brain of Oreochromis niloticus. Environ Toxicol Pharmacol 21:241–245

    Article  Google Scholar 

  • Wang J, Chen Y, Chen B, Ding J, Xia G, Gao C et al (2010) Pharmacokinetic parameters and tissue distribution of magnetic Fe3O4 nanoparticles in mice. Int J Nanomedicine 5:861–866

    CAS  Google Scholar 

  • Wills ED (1987) Evaluation of lipid peroxidation in lipids and biological membranes. In: Snell K, Mullok B (eds) Biochemical toxicology: A practical approach. IRL Press, Oxford, pp 407–420

    Google Scholar 

  • Yumoto S, Nagai H, Kobayashi K, Tamate A et al (2003) Al incorporation into the brain of suckling rats through maternal milk. J Inorg Biochem 97:155–160

    Article  CAS  Google Scholar 

  • Zhu X, Tian S, Cai Z (2012) Toxicity assessment of iron oxide nanoparticles in zebrafish (Danio rerio) early life stages. PLoS ONE 7:e46286

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to the Portuguese Foundation for Science and Technology (FCT) for Post-doctoral grants to NAA (SFRH/BPD/84671/2012) and KS (SFRH/BPD/79490/2011) and PhD grant to IM (SFRH/BD/74410/2010) and to the Aveiro University Research Institute/CESAM. The authors are also indebted to Daniela S. Tavares, University of Aveiro, Portugal for providing IONPs for the current bioexperiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Iqbal Ahmad.

Additional information

Responsible editor: Henner Hollert

Naser A. Anjum and Koigoora Srikanth contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Anjum, N.A., Srikanth, K., Mohmood, I. et al. Brain glutathione redox system significance for the control of silica-coated magnetite nanoparticles with or without mercury co-exposures mediated oxidative stress in European eel (Anguilla anguilla L.). Environ Sci Pollut Res 21, 7746–7756 (2014). https://doi.org/10.1007/s11356-014-2673-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-014-2673-6

Keywords

Navigation