Environmental Science and Pollution Research

, Volume 21, Issue 11, pp 7130–7139 | Cite as

Long-term copper partitioning of metal-spiked sediments used in outdoor mesocosms

  • Stephanie Gardham
  • Grant C. Hose
  • Stuart L. Simpson
  • Chad Jarolimek
  • Anthony A. Chariton
Research Article


Understanding the effects of sediment contaminants is pivotal to reducing their impact in aquatic environments. Outdoor mesocosms enable us to decipher the effects of these contaminants in environmentally realistic scenarios, providing a valuable link between laboratory and field experiments. However, because of their scale, mesocosm experiments are often complex to set up and manage. The creation of environmentally realistic conditions, particularly when using artificially contaminated sediment, is one issue. Here, we describe changes in geochemistry over 1.5 years of a sediment spiked with four different concentrations of copper, within a large freshwater mesocosm facility. The spiking procedure included proportional amendments with garden lime to counteract the decreases in pH caused by the copper additions. The majority of copper within the spiked mesocosm sediments partitioned to the particulate phase with low microgram per liter concentrations measured in the pore waters and overlying waters. The minimum partition coefficient following equilibration between pore waters and sediments was 1.5 × 104 L/kg, which is well within the range observed for field-contaminated sediments (1 × 104 to 1 × 106 L/kg). Recommendations are made for the in situ spiking of sediments with metals in large outdoor mesocosms. These include selecting an appropriate sediment type, adjusting the pH, allowing sufficient equilibration time, and regular mixing and monitoring of metal partitioning throughout the experimental period.


Toxicity test Copper Risk assessment Sediment quality Manipulation 





Very low






Very high


Overlying water


Pore water


Interim sediment quality guideline


Online resource



The PhD research was carried out with an iMQRES scholarship from Macquarie University and support from CSIRO’s Water for a Healthy Country Flagship. The authors thank Alexander Michie and Lois Oulton for their help in setting up the mesocosm infrastructure and Joshua King and Steven Leahy for their help in ICP-AES analysis. Many thanks also to Graeme Batley for his advice and edits of the manuscript. Mesocosm construction was funded by a Macquarie University Research Infrastructure grant to Grant Hose.

Supplementary material

11356_2014_2631_MOESM1_ESM.pdf (816 kb)
ESM 1 (PDF 815 kb)


  1. Ahlf W, Drost W, Heise S (2009) Incorporation of metal bioavailability into regulatory frameworks—metal exposure in water and sediment. J Soils Sediments 9:411–419. doi: 10.1007/s11368-009-0109-6 CrossRefGoogle Scholar
  2. ANZECC/ARMCANZ (2000) Australian and New Zealand guidelines for fresh and marine water quality. CanberraGoogle Scholar
  3. Bat L, Raffaelli D (1998) Sediment toxicity testing: a bioassay approach using the amphipod Corophium volutator and the polychaete Arenicola marina. J Exp Mar Biol Ecol 226:217–239. doi: 10.1016/S0022-0981(97)00249-9 CrossRefGoogle Scholar
  4. Batley GE, Stahl RG, Babut MP et al (2005) Scientific underpinnings of sediment-quality guidelines. In: Wenning RJ, Batley GE, Ingersoll CG, Moore DW (eds) Use of sediment quality guidelines and related tools for the assessment of contaminated sediments. Society of Environmental Toxicology and Chemistry, Pensacola, pp 39–120Google Scholar
  5. Berry WJ, Hansen DJ, Mahony JD et al (1996) Predicting the toxicity of metal-spiked laboratory sediments using acid-volatile sulfide and interstitial water normalizations. Environ Toxicol Chem 15:2067–2079CrossRefGoogle Scholar
  6. Besser JM, Brumbaugh WG, May TW, Ingersoll CG (2003) Effects of organic amendments on the toxicity and bioavailability of cadmium and copper in spiked formulated sediments. Environ Toxicol Chem 22:805–815CrossRefGoogle Scholar
  7. Besser JM, Brumbaugh WG, Ingersoll CG et al (2013) Chronic toxicity of nickel-spiked freshwater sediments: variation in toxicity among eight invertebrate taxa and eight sediments. Environ Toxicol Chem 32:2495–2506. doi: 10.1002/etc.2271 Google Scholar
  8. Bradley RW, Sprague JB (1985) The influence of pH, water hardness, and alkalinity on the acute lethality of zinc to rainbow trout (Salmo gairdneri). Can J Fish Aquat Sci 42:731–736CrossRefGoogle Scholar
  9. Brumbaugh WG, Besser JM, Ingersoll CG et al (2013) Preparation and characterization of nickel-spiked freshwater sediments for toxicity tests: toward more environmentally realistic nickel partitioning. Environ Toxicol Chem 32:2482–2494. doi: 10.1002/etc.2272 Google Scholar
  10. Burton ED, Phillips IR, Hawker DW (2006) Factors controlling the geochemical partitioning of trace metals in estuarine sediments. Soil Sediment Contam 15:253–276. doi: 10.1080/15320380600646290 CrossRefGoogle Scholar
  11. Calamari D, Marchetti R, Vailati G (1980) Influence of water hardness on cadmium toxicity to Salmo gairdneri rich. Water Res 14:1421–1426CrossRefGoogle Scholar
  12. Chapman PM, Wang F, Janssen C et al (1998) Ecotoxicology of metals in aquatic sediments: binding and release, bioavailability, risk assessment, and remediation. Can J Fish Aquat Sci 55:2221–2243. doi: 10.1139/f98-145 CrossRefGoogle Scholar
  13. Chariton AA, Roach AC, Simpson SL, Batley GE (2010) Influence of the choice of physical and chemistry variables on interpreting patterns of sediment contaminants and their relationships with estuarine macrobenthic communities. Mar Freshw Res 61:1109–1122CrossRefGoogle Scholar
  14. Costello DM, Burton GA, Hammerschmidt CR et al (2011) Nickel phase partitioning and toxicity in field-deployed sediments. Environ Sci Technol 45:5798–5805. doi: 10.1021/es104373h CrossRefGoogle Scholar
  15. De Schamphelaere KAC, Janssen CR (2004) Effects of dissolved organic carbon concentration and source, pH, and water hardness on chronic toxicity of copper to Daphnia magna. Environ Toxicol Chem 23:1115–1122CrossRefGoogle Scholar
  16. Di Toro DM, Allen HE, Bergman HL et al (2001) Biotic ligand model of the acute toxicity of metals. 1. Technical basis. Environ Toxicol Chem 20:2383–2396CrossRefGoogle Scholar
  17. Di Toro DM, McGrath JA, Hansen DJ et al (2005) Predicting sediment metal toxicity using a sediment biotic ligand model: methodology and initial application. Environ Toxicol Chem 24:2410–2427CrossRefGoogle Scholar
  18. Fukunaga A, Anderson MJ (2011) Bioaccumulation of copper, lead and zinc by the bivalves Macomona liliana and Austrovenus stutchburyi. J Exp Mar Biol Ecol 396:244–252. doi: 10.1016/j.jembe.2010.10.029 CrossRefGoogle Scholar
  19. Hassan SM, Garrison AW, Allen HE et al (1996) Estimation of partition coefficients for five trace metals in sandy sediments and application to sediment quality criteria. Environ Toxicol Chem 15:2198–2208CrossRefGoogle Scholar
  20. Hickey CW, Golding LA (2002) Response of macroinvertebrates to copper and zinc in a stream mesocosm. Environ Toxicol Chem 21:1854–1863CrossRefGoogle Scholar
  21. Hobday AJ, Lough JM (2011) Projected climate change in Australian marine and freshwater environments. Mar Freshw Res 62:1000–1014CrossRefGoogle Scholar
  22. Hose GC, Hyne RV, Lim RP (2003) Toxicity of endosulfan to Atalophlebia spp. (Ephemeroptera) in the laboratory, mesocosm, and field. Environ Toxicol Chem 22:3062–3068CrossRefGoogle Scholar
  23. Hose GC, Murray BR, Park ML et al (2006) A meta-analysis comparing the toxicity of sediments in the laboratory and in situ. Environ Toxicol Chem 25:1148–1152CrossRefGoogle Scholar
  24. Höss S, Haitzer M, Traunspurger W et al (1997) Influence of particle size distribution and content of organic matter on the toxicity of copper in sediment bioassays using Caenorhabditis elegans (nematoda). Water Air Soil Pollut 99:689–695Google Scholar
  25. Hutchins CM, Teasdale PR, Lee J, Simpson SL (2007) The effect of manipulating sediment pH on the porewater chemistry of copper- and zinc-spiked sediments. Chemosphere 69:1089–1099. doi: 10.1016/j.chemosphere.2007.04.029 CrossRefGoogle Scholar
  26. Hutchins CM, Teasdale PR, Lee SY, Simpson SL (2008) Cu and Zn concentration gradients created by dilution of pH neutral metal-spiked marine sediment: a comparison of sediment geochemistry with direct methods of metal addition. Environ Sci Technol 42:2912–2918CrossRefGoogle Scholar
  27. Hutchins CM, Teasdale PR, Lee SY, Simpson SL (2009a) The effect of sediment type and pH-adjustment on the porewater chemistry of copper- and zinc-spiked sediments. Soil Sediment Contam 18:55–73. doi: 10.1080/15320380802545407 CrossRefGoogle Scholar
  28. Hutchins CM, Teasdale PR, Lee SY, Simpson SL (2009b) Influence of sediment metal spiking procedures on copper bioavailability and toxicity in the estuarine bivalve Indoaustriella lamprelli. Environ Toxicol Chem 28:1885–1892. doi: 10.1897/08-469.1 CrossRefGoogle Scholar
  29. Khangarot BS, Das S (2010) Effects of copper on the egg development and hatching of a freshwater pulmonate snail Lymnaea luteola L. J Hazard Mater 179:665–675. doi: 10.1016/j.jhazmat.2010.03.054 CrossRefGoogle Scholar
  30. King CK, Gale SA, Hyne RV et al (2006) Sensitivities of Australian and New Zealand amphipods to copper and zinc in waters and metal-spiked sediments. Chemosphere 63:1466–1476. doi: 10.1016/j.chemosphere.2005.09.020 CrossRefGoogle Scholar
  31. Kunz A, Jardim WF (2000) Complexation and adsorption of copper in raw sewage. Water Res 34:2061–2068CrossRefGoogle Scholar
  32. Lee JS, Lee BG, Luoma SN et al (2000) Influence of acid volatile sulfides and metal concentrations on metal partitioning in contaminated sediments. Environ Sci Technol 34:4511–4516. doi: 10.1021/es001034+ CrossRefGoogle Scholar
  33. Lourino-Cabana B, Lesven L, Billon G et al (2009) Impacts of metal contamination in calcareous waters of Deûle River (France): water quality and thermodynamic studies on metallic mobility. Water Air Soil Pollut 206:187–201. doi: 10.1007/s11270-009-0095-8 CrossRefGoogle Scholar
  34. Pettigrove V, Hoffmann A (2005) A field-based microcosm method to assess the effects of polluted urban stream sediments on aquatic macroinvertebrates. Environ Toxicol Chem 24:170–180CrossRefGoogle Scholar
  35. Rayment GE, Higginson FR (1992) Australian Laboratory Handbook of Soil and Water Chemical Methods. Inkata, MelbourneGoogle Scholar
  36. Roussel H, Ten-Hage L, Joachim S et al (2007) A long-term copper exposure on freshwater ecosystem using lotic mesocosms: Primary producer community responses. Aquat Toxicol 81:168–182. doi: 10.1016/j.aquatox.2006.12.006 CrossRefGoogle Scholar
  37. Roussel H, Chauvet E, Bonzom J-M (2008) Alteration of leaf decomposition in copper-contaminated freshwater mesocosms. Environ Toxicol Chem 27:637–644. doi: 10.1897/07-168 CrossRefGoogle Scholar
  38. Santore RC, Di Toro DM, Paquin PR et al (2001) Biotic ligand model of the acute toxicity of metals. 2. Application to acute toxicity in freshwater fish and daphnia. Environ Toxicol Chem 20:2397–2402CrossRefGoogle Scholar
  39. Santoro A, Blo G, Mastrolitti S, Fagioli F (2009) Bioaccumulation of heavy metals by aquatic macroinvertebrates along the Basento River in the south of Italy. Water Air Soil Pollut 201:19–31. doi: 10.1007/s11270-008-9923-5 CrossRefGoogle Scholar
  40. Serra A, Guasch H (2009) Effects of chronic copper exposure on fluvial systems: linking structural and physiological changes of fluvial biofilms with the in-stream copper retention. Sci Total Environ 407:5274–5282. doi: 10.1016/j.scitotenv.2009.06.008 CrossRefGoogle Scholar
  41. Shaw JL, Manning JP (1996) Evaluating macroinvertebrate population and community level effects in outdoor microcosms: use of in situ bioassays and multivariate analysis. Environ Toxicol Chem 15:608–617CrossRefGoogle Scholar
  42. Simpson SL (2005) Exposure-effect model for calculating copper effect concentrations in sediments with varying copper binding properties: a synthesis. Environ Sci Technol 39:7089–7096CrossRefGoogle Scholar
  43. Simpson SL, Batley GE (2003) Disturbances to metal partitioning during toxicity testing of iron(II)-rich estuarine pore waters and whole sediments. Environ Toxicol Chem 22:424–432CrossRefGoogle Scholar
  44. Simpson SL, Batley GE (2007) Predicting metal toxicity in sediments: a critique of current approaches. Integr Environ Assess Manag 3:18–31CrossRefGoogle Scholar
  45. Simpson SL, Angel BM, Jolley DF (2004) Metal equilibration in laboratory-contaminated (spiked) sediments used for the development of whole-sediment toxicity tests. Chemosphere 54:597–609. doi: 10.1016/j.chemosphere.2003.08.007 CrossRefGoogle Scholar
  46. Simpson SL, Batley GE, Hamilton IL, Spadaro DA (2011) Guidelines for copper in sediments with varying properties. Chemosphere 85:1487–1495. doi: 10.1016/j.chemosphere.2011.08.044 CrossRefGoogle Scholar
  47. Sodré FF, Grassi MT (2006) Changes in copper speciation and geochemical fate in freshwaters following sewage discharges. Water Air Soil Pollut 178:103–112. doi: 10.1007/s11270-006-9158-2 CrossRefGoogle Scholar
  48. Sydney Environmental and Soil Laboratory (2009) Landscape package 4: Complete soil assessment - Benedict SmartMix8Google Scholar
  49. Strom D, Simpson SL, Batley GE, Jolley DF (2011) The influence of sediment particle size and organic carbon on toxicity of copper to benthic invertebrates in oxic/suboxic surface sediments. Environ Toxicol Chem 30:1599–1610. doi: 10.1002/etc.531 CrossRefGoogle Scholar
  50. Terra BF, Araújo FG, Calza CF et al (2007) Heavy metal in tissues of three fish species from different trophic levels in a tropical Brazilian river. Water Air Soil Pollut 187:275–284. doi: 10.1007/s11270-007-9515-9 CrossRefGoogle Scholar
  51. Welsh PG, Lipton J, Chapman GA, Podrabsky TL (2000) Relative importance of calcium and magnesium in hardness-based modification of copper toxicity. Environ Toxicol Chem 19:1624–1631CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Stephanie Gardham
    • 1
    • 2
  • Grant C. Hose
    • 1
  • Stuart L. Simpson
    • 2
  • Chad Jarolimek
    • 2
  • Anthony A. Chariton
    • 2
  1. 1.Department of Environment and GeographyMacquarie UniversityNorth RydeAustralia
  2. 2.Centre for Environmental Contaminants ResearchCSIRO Land and WaterLucas HeightsAustralia

Personalised recommendations