Advertisement

Environmental Science and Pollution Research

, Volume 22, Issue 11, pp 8022–8030 | Cite as

Effect of a thymol application on olfactory memory and gene expression levels in the brain of the honeybee Apis mellifera

  • Elsa Bonnafé
  • Florian Drouard
  • Lucie Hotier
  • Jean-Luc Carayon
  • Pierre Marty
  • Michel Treilhou
  • Catherine ArmengaudEmail author
Crop protection: environment, human health, and biodiversity

Abstract

Essential oils are used by beekeepers to control the Varroa mites that infest honeybee colonies. So, bees can be exposed to thymol formulations in the hive. The effects of the monoterpenoid thymol were explored on olfactory memory and gene expression in the brain of the honeybee. In bees previously exposed to thymol (10 or 100 ng/bee), the specificity of the response to the conditioned stimulus (CS) was lost 24 h after learning. Besides, the octopamine receptor OA1 gene Amoa1 showed a significant decrease of expression 3 h after exposure with 10 or 100 ng/bee of thymol. With the same doses, expression of Rdl gene, coding for a GABA receptor subunit, was not significantly modified but the trpl gene was upregulated 1 and 24 h after exposure to thymol. These data indicated that the genes coding for the cellular targets of thymol could be rapidly regulated after exposure to this molecule. Memory and sensory processes should be investigated in bees after chronic exposure in the hive to thymol-based preparations.

Keywords

Honeybee Olfactory conditioning Thymol TRPL RDL OA1 Real-time PCR 

Abbreviations

AL

Antennal lobes

CS

Conditioned stimulus

GABA

Gamma-aminobutyric acid

MBs

Mushroom bodies

NO

Novel odorant

PBS

Phosphate-buffered saline

PER

Proboscis extension reflex

RDL

Resistant to dieldrin

TRPL

Transient receptor potential-like channel

US

Unconditioned stimulus

Notes

Acknowledgments

We wish to thank Genome & Transcriptome center (Rangueil, Toulouse) for technical assistance. The work was supported by the Conseil Régional Midi-Pyrénées, the Centre National de la Recherche Scientifique, and the Centre Universitaire de Formation et de Recherche J.F. Champollion (Project 10051284). We thank Dr. P. Winterton for English language improvement.

Conflict of interest

The authors declare that there are no conflicts of interest.

References

  1. Aliouane Y, Kacimi El Hassani A, Gary V, Armengaud C, Lambin M, Gauthier M (2009) Subchronic exposure of honeybees to sublethal doses of pesticides: effects on behavior. Environ Toxicol Chem 28:113–122. doi: 10.1897/08-110.1 CrossRefGoogle Scholar
  2. Bergougnoux M, Treilhou M, Armengaud C (2013) Exposure to thymol decreased phototactic behaviour in the honeybee (Apis mellifera) in laboratory conditions. Apidologie 44:82–89. doi: 10.1007/s13592-012-0158-5 CrossRefGoogle Scholar
  3. Bernadou A, Démares F, Couret-Fauvel T, Sandoz JC, Gauthier M (2009) Effect of fipronil on side-specific antennal tactile learning in the honeybee. J Insect Physiol 55:1099–1106. doi: 10.1016/j.jinsphys.2009.08.019 CrossRefGoogle Scholar
  4. Bitterman ME, Menzel R, Fietz A, Schäfer S (1983) Classical conditioning of proboscis extension in honeybees (Apis mellifera). J Comp Psychol 97(2):107–119CrossRefGoogle Scholar
  5. Blenau W, Rademacher E, Baumann A (2012) Plant essential oils and formamidines as insecticides/acaricides: what are the molecular targets? Apidologie 43:334–347. doi: 10.1007/s13592-011-0108-7 CrossRefGoogle Scholar
  6. Boncristiani H, Underwood R, Schwarz R, Evans J, Pettis J, van Engelsdorp D (2012) Direct effect of acaricides on pathogen loads and gene expression levels in honey bees Apis mellifera. J Insect Physiol 58:613–620. doi: 10.1016/j.jinsphys.2011.12.011 CrossRefGoogle Scholar
  7. Boumghar K, Couret-Fauvel T, Garcia M, Armengaud C (2012) Evidence for a role of GABA and glutamate-gated chloride channels in olfactory memory. Pharmacol Biochem Behav 103:69–75CrossRefGoogle Scholar
  8. Cronin MA, Lieu MH, Tsunoda S (2006) Two stages of light-dependent TRPL-channel translocation in Drosophila photoreceptors. J Cell Sci 119(Pt 14):2935–2944, Erratum in: J Cell Sci. 2007 May 1;120(Pt 9):1701. PMID:16787936 [PubMed - indexed for MEDLINE]CrossRefGoogle Scholar
  9. Damiani N, Gende LB, Bailac P, Marcangeli JA, Eguaras MJ (2009) Acaricidal and insecticidal activity of essential oils on Varroa destructor (Acari: Varroidae) and Apis mellifera (Hymenoptera: Apidae). Parasitol Res 106:145–152. doi: 10.1007/s00436-009-1639-y CrossRefGoogle Scholar
  10. Decourtye A, Devillers J, Genecque E et al (2005) Comparative sublethal toxicity of nine pesticides on olfactory learning performances of the honeybee Apis mellifera. Arch Environ Contam Toxicol 48:242–250. doi: 10.1007/s00244-003-0262-7 CrossRefGoogle Scholar
  11. Dupuis JP, Bazelot M, Barbara GS, Paute S, Gauthier M, Raymond-Delpech V (2010) Homomeric RDL and heteromeric RDL/LCCH3 GABA receptors in the honeybee antennal lobes: two candidates for inhibitory transmission in olfactory processing. J Neurophysiol 103(1):458–468. doi: 10.1152/jn.00798.2009 CrossRefGoogle Scholar
  12. El Hassani AK, Dacher M, Gauthier M, Armengaud C (2005) Effects of sublethal doses of fipronil on the behavior of the honeybee (Apis mellifera). Pharmacol Biochem Behav 82:30–39. doi: 10.1016/j.pbb.2005.07.008 CrossRefGoogle Scholar
  13. El Hassani AK, Giurfa M, Gauthier M, Armengaud C (2008) Inhibitory neurotransmission and olfactory memory in honeybees. Neurobiol Learn Mem 90:589–595. doi: 10.1016/j.nlm.2008.07.018 CrossRefGoogle Scholar
  14. El Hassani AK, Dupuis JP, Gauthier M, Armengaud C (2009) Glutamatergic and GABAergic effects of fipronil on olfactory learning and memory in the honeybee. Invert Neurosci 9:91–100. doi: 10.1007/s10158-009-0092-z CrossRefGoogle Scholar
  15. Emsen B, Dodologlu A (2011) Efficacy of different organic compounds against bee mite (Varroa destructor Anderson and Truman) in honey bee (Apis mellifera L.) colonies. J Anim Vet Adv 10:802–805. doi: 10.3923/javaa.2011.802.805 CrossRefGoogle Scholar
  16. Farooqui T, Robinson K, Vaessin H, Smith BH (2003) Modulation of early olfactory processing by an octopaminergic reinforcement pathway in the honeybee. J Neurosci 23:5370–5380Google Scholar
  17. Farooqui T, Vaessin H, Smith BH (2004) Octopamine receptors in the honeybee (Apis mellifera) brain and their disruption by RNA-mediated interference. J Insect Physiol 50:701–713. doi: 10.1016/j.jinsphys.2004.04.014 CrossRefGoogle Scholar
  18. Galizia CG, Sachse S (2010) Odor coding in insects. In: Menini A (ed) The neurobiology of olfaction. CRC Press, Boca Raton, Chapter 2Google Scholar
  19. Gashout HA, Guzman-Novoa E (2009) Acute toxicity of essential oils and other natural compounds to the parasitic mite, Varroa destructor, and to larval and adult worker honey bees (Apis mellifera L.). J Apic Res 48(4):263–269CrossRefGoogle Scholar
  20. Gauthier M, Grünewald B (2012) Neurotransmitter systems in the honey bee brain: functions in learning and memory. In: Galizia CG, Eisenhardt D, Giurfa M (eds) Honeybee neurobiology and behavior. Springer, Dordrecht, pp 155–169. doi: 10.1007/978-94-007-2099-2_13 CrossRefGoogle Scholar
  21. Gerber B, Wüstenberg D, Schütz A, Menzel R (1998) Temporal determinants of olfactory long-term retention in honeybee classical conditioning: nonmonotonous effects of the training trial interval. Neurobiol Learn Mem 69:71–78. doi: 10.1006/nlme.1997.3801 CrossRefGoogle Scholar
  22. Grohmann L, Blenau W, Erber J, Ebert PR, Strünker T, Baumann A (2003) Molecular and functional characterization of an octopamine receptor from honeybee (Apis mellifera) brain. J Neurochem 86(3):725–735CrossRefGoogle Scholar
  23. Hammer M (1993) An identified neuron mediates the unconditioned stimulus in associative olfactory learning in honeybees. Nature 366:59–63CrossRefGoogle Scholar
  24. Henry M, Béguin M, Requier F et al (2012) A common pesticide decreases foraging success and survival in honey bees. Science (New York, NY) 336:348–350. doi: 10.1126/science.1215039 CrossRefGoogle Scholar
  25. Hosler JS, Buxton KL, Smith BH (2000) Impairment of olfactory discrimination by blockade of GABA and nitric oxide activity in the honey bee antennal lobes. Behav Neurosci 114(3):514–525CrossRefGoogle Scholar
  26. Imdorf A, Kilchenmann V, Bogdanov S et al (1995) Toxic effects of thymol, camphor, menthol and eucalyptol on Varroa jacobsoni Oud and Apis mellifera L in a laboratory test. Apidologie 26:27–31. doi: 10.1051/apido:19950104 CrossRefGoogle Scholar
  27. Kucharski R, Maleszka R (2005) Microarray and real-time PCR analyses of gene expression in the honeybee brain following caffeine treatment. J Mol Neurosci 27:269–276. doi: 10.1385/JMN CrossRefGoogle Scholar
  28. Leung HT, Shino S, Kim E (2012) The regulations of Drosophila phototransduction. J Neurogenet 26(2):144–150. doi: 10.3109/01677063.2011.650253 CrossRefGoogle Scholar
  29. Liu X, Krause WC, Davis RL (2007) GABAA receptor RDL inhibits Drosophila olfactory associative learning. Neuron 56(6):1090–1102CrossRefGoogle Scholar
  30. Liu X, Buchanan ME, Han KA, Davis RL (2009) The GABAA receptor RDL suppresses the conditioned stimulus pathway for olfactory learning. J Neurosci 29(5):1573–1579. doi: 10.1523/JNEUROSCI.4763-08.2009 CrossRefGoogle Scholar
  31. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods (San Diego, Calif) 25:402–408. doi: 10.1006/meth.2001.1262 CrossRefGoogle Scholar
  32. McQuillan HJ, Barron AB, Mercer AR (2012) Age-behaviour-related changes in the expression of biogenic amine receptor genes in the antennae of honey bees (Apis mellifera). J Comp Physiol A Neuroethol Sens Neural Behav Physiol 198(10):753–761CrossRefGoogle Scholar
  33. Mondet F, Goodwin M, Mercer A (2011) Age-related changes in the behavioural response of honeybees to Apiguard®, a thymol-based treatment used to control the mite Varroa destructor. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 197:1055–1062. doi: 10.1007/s00359-011-0666-1 CrossRefGoogle Scholar
  34. Parnas M, Peters M, Dadon D et al (2009) Carvacrol is a novel inhibitor of Drosophila TRPL and mammalian TRPM7 channels. Cell Calcium 45:300–309. doi: 10.1016/j.ceca.2008.11.009 CrossRefGoogle Scholar
  35. Parsons PA (1975) Phototactic responses along a gradient of light intensities for the sibling species Drosophila melanogaster and Drosophila simulans. Beh Genet 5:17–25CrossRefGoogle Scholar
  36. Priestley CM, Williamson EM, Wafford KA, Sattelle DB (2003) Thymol, a constituent of thyme essential oil, is a positive allosteric modulator of human GABA(A) receptors and a homo-oligomeric GABA receptor from Drosophila melanogaster. Br J Pharmacol 140:1363–1372. doi: 10.1038/sj.bjp.0705542 CrossRefGoogle Scholar
  37. Ratnieks FLW, Carreck NL (2010) Ecology. Clarity on honey bee collapse? Science (New York, NY) 327:152–153. doi: 10.1126/science.1185563 CrossRefGoogle Scholar
  38. Rien D, Kern R, Kurtz R (2012) Octopaminergic modulation of contrast gain adaptation in fly visual motion-sensitive neurons. Eur J Neurosci 36(8):3030–3039. doi: 10.1111/j.1460-9568.2012.08216.x CrossRefGoogle Scholar
  39. Sinakevitch I, Mustard JA, Smith BH (2011) Distribution of the octopamine receptor AmOA1 in the honey bee brain. PLoS One 6(1):e14536CrossRefGoogle Scholar
  40. Stopfer M, Bhagavan S, Smith BH, Laurent G (1997) Impaired odour discrimination on desynchronization of odour-encoding neural assemblies. Nature 390(6655):70–74CrossRefGoogle Scholar
  41. Xu XZ, Li HS, Guggino WB, Montell C (1997) Coassembly of TRP and TRPL produces a distinct store-operated conductance. Cell 89:1155–1164CrossRefGoogle Scholar
  42. Xu XZ, Chien F, Butler A, Salkoff L, Montell C (2000) TRPgamma, a drosophila TRP-related subunit, forms a regulated cation channel with TRPL. Neuron 26:647–657CrossRefGoogle Scholar
  43. Zhang YV, Raghuwanshi RP, Shen WL, Montell C (2013) Food experience-induced taste desensitization modulated by the Drosophila TRPL channel. Nat Neurosci 16(10):1468–1476. doi: 10.1038/nn.3513 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Elsa Bonnafé
    • 1
  • Florian Drouard
    • 2
  • Lucie Hotier
    • 2
  • Jean-Luc Carayon
    • 1
  • Pierre Marty
    • 3
  • Michel Treilhou
    • 1
  • Catherine Armengaud
    • 2
    Email author
  1. 1.VAcBio Group, EA 4357Champollion University CenterAlbi Cedex 09France
  2. 2.Research Center for Animal Cognition, CNRS-UMR 5169Paul Sabatier UniversityToulouse Cedex 91France
  3. 3.GEODE, CNRS-UMR 5602Champollion University CenterAlbi Cedex 09France

Personalised recommendations