Environmental Science and Pollution Research

, Volume 21, Issue 11, pp 7187–7193 | Cite as

Assessment of instream foam formation and quantification of foam in effluents

  • Katerina Schilling
  • Ulrike Bletterie
  • Matthias Zessner
Research Article
  • 134 Downloads

Abstract

Although the foam formation on surface waters nowadays is not comparable with the foam “mountains” in the 1970s, it still is an issue of water quality concern. A drawback in the discussion is the lack of methods to assess instream foam formation and foam emitted by point sources. Foam formation on a transboundary river in Austria led to an intensive study resulting in two parameters to quantify instream and emitted foam. Foam potential is introduced as emission parameter that is defined as flow rate of river water, which can foam due to an effluent’s discharge. The foam index (FI) represents a parameter to assess the foam on the river and allows a semi-quantitative differentiation between the varying foaming conditions. This publication will present the developed methods and show some results to prove their accuracy and applicability.

Keywords

Instream foam formation Foam monitoring Foam index Foam potential 

References

  1. Badami S, Moorkoth S, Suresh B (2004) Caesalpinia sappan—a medicinal and dye yielding plant. Nat Prod Radiance 3(2):75–82Google Scholar
  2. Basso MC, Pizzi A, Celzard A (2013) Influence of formulation on the dynamics of preparation of tannin-based foams. Ind Crop Prod 51:396–400. doi:10.1016/j.indcrop.2013.09.013 CrossRefGoogle Scholar
  3. Bhat TK, Singh B, Sharma OP (1998) Microbial degradation of tannins—a current perspective. Biodegradation 9(5):343CrossRefGoogle Scholar
  4. Bletterie U, Ruzicka K, Delgado L, Zessner M (2009) Investigations on ozonation of tannery wastewater as a post treatment step. In: 5th IWA-Conference on Oxidation Technologies for Water and Wastewater Treatment, Berlin, Germany, p 8Google Scholar
  5. Capparucci C, Gironi F, Piemonte V (2010) Equilibrium and extraction kinetics of tannins from chestnut tree wood in water solutions. Asia Pac J Chem Eng 6(4):606–612. doi:10.1002/apj.455 CrossRefGoogle Scholar
  6. Cassano A, Adzet J, Molinari R, Buonomenna MG, Roig J, Drioli E (2003) Membrane treatment by nanofiltration of exhausted vegetable tannin liquors from the leather industry. Water Res 37(10):2426CrossRefGoogle Scholar
  7. Craig D, Ireland RJ, Bärlocher F (1989) Seasonal variations in the organic composition of seafoam. J Exp Mar Biol Ecol 130:71–80CrossRefGoogle Scholar
  8. Defrain M, Schulze-Rettmer R (1989) Schaumentwicklung in biologisch gereinigtem Abwasser und im Gewässer. Vom Wasser 73:251–257Google Scholar
  9. Haefele TF (2006) Interactions of an antimicrobial peptaibol with amphiphilic block copolymers. Cuvillier, GöttingenGoogle Scholar
  10. He Q, Yao K, Sun D, Shi B (2007) Biodegradability of tannin-containing wastewater from leather industry. Biodegradation 18(4):465CrossRefGoogle Scholar
  11. Holmberg K, Jönsson B, Kronberg B, Lindman B (2003) Foaming of surfactant solutions. surfactants and polymers in aqueous solution. Wiley: New York. doi:10.1002/0470856424.ch20
  12. Krishnamoorthy G, Sadulla S, Sehgal PK, Mandal AB (2012) Green chemistry approaches to leather tanning process for making chrome-free leather by unnatural amino acids. J Hazard Mater 215-216:173–182. doi:10.1016/j.jhazmat.2012.02.046 CrossRefGoogle Scholar
  13. Lacasse K, Baumann W (2004) Textile chemicals: environmental data and facts. Springer, BerlinCrossRefGoogle Scholar
  14. Li X, Pizzi A, Cangemi M, Fierro V, Celzard A (2012) Flexible natural tannin-based and protein-based biosourced foams. Ind Crop Prod 37(1):389–393CrossRefGoogle Scholar
  15. Madrange L, Chaboury P, Ferrandon O, Mazet M, Rodeaud J (1992) Study of the formation and stability of chemical foam on the Vienne river between Limoges and Confolens. Revues des Sciences de L'eau 6:315–334CrossRefGoogle Scholar
  16. Normungsinstitut D (2004) Surface active agents - Determination of surface tension. vol DIN EN 14370:2004Google Scholar
  17. Ouyang Y, Nkedi-Kizza P, Wu QT, Shinde D, Huang CH (2006) Assessment of seasonal variations in surface water quality. Water Res 40(20):3800–3810CrossRefGoogle Scholar
  18. Poremba R (1991) Untersuchung zur Schaumbildung auf Fließgewässern. Fachhochschule für Druck, StuttgartGoogle Scholar
  19. Pugh RJ (1996) Foaming, foam films, antifoaming and defoaming. Adv Colloid Interf Sci 64:67CrossRefGoogle Scholar
  20. Ruzicka K, Gabriel O, Bletterie U, Winkler S, Zessner M (2009a) Cause and effect relationship between foam formation and treated wastewater effluents in a transboundary river. Phys Chem Earth Parts A/B/C 34(8-9):565CrossRefGoogle Scholar
  21. Ruzicka K, Gabriel O, Wegricht U, Winkler S, Zessner M (2009b) Foam formation on an Austrian–Hungarian lowland river: reasons, methods and solutions. Water Sci Technol 60(6):1379–1384CrossRefGoogle Scholar
  22. Schilling K, Zessner M (2011) Foam in the aquatic environment. Water Res 45(15):4355–4366CrossRefGoogle Scholar
  23. Singh KP, Malik A, Sinha S (2005) Water quality assessment and apportionment of pollution sources of Gomti river (India) using multivariate statistical techniques—a case study. Anal Chim Acta 538(1–2):355CrossRefGoogle Scholar
  24. Tondi G, Zhao W, Pizzi A, Du G, Fierro V, Celzard A (2009) Tannin-based rigid foams: a survey of chemical and physical properties. Bioresour Technol 100(21):5162–5169CrossRefGoogle Scholar
  25. Vikingstad AK (2006) Static and dynamic studies of foam and foam-oil interactions. University of Bergen, BergenGoogle Scholar
  26. Wegner C, Hamburger M (2002) Occurrence of stable foam in the Upper Rhine River caused by plant-derived surfactants. Environ Sci Technol 36(15):3250–3256CrossRefGoogle Scholar
  27. Wilson MI, Robertson LD, Daly M, Walton SA (1995) Effects of visual cues on assessment of water quality. J Environ Psychol 15(1):53CrossRefGoogle Scholar
  28. Winkler S, Zessner M, Saracevic E, Ruzicka K, Fleischmann N, Wegricht U (2008) Investigative monitoring in the context of detecting anthropogenic impact on an epipotamal river. Water Sci Technol 57(7):1023–1030CrossRefGoogle Scholar
  29. Wu W, Clifford M, Howell NK (2007) The effect of instant green tea on the foaming and rheological properties of egg albumen proteins. J Sci Food Agric 87(10):1810–1819CrossRefGoogle Scholar
  30. Zessner M, Ruzicka K, Gabriel O, Wegricht U, Winkler S, Saracevic E, Matsche N, Svardal K, Kroiss H, Andres H (2007) Nachhaltige Wassergütewirtschaft Raab - Modul 1 Schaumproblematik. TU Wien, Institut für Wassergüte, Ressourcenmanagement und Abfallwirtschaft, WienGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Katerina Schilling
    • 1
  • Ulrike Bletterie
    • 1
  • Matthias Zessner
    • 1
  1. 1.Institute for Water Quality, Resources and Waste ManagementVienna University of TechnologyViennaAustria

Personalised recommendations