Skip to main content

Source apportionment of surfactants in marine aerosols at different locations along the Malacca Straits

Abstract

This study aims to determine the source apportionment of surfactants in marine aerosols at two selected stations along the Malacca Straits. The aerosol samples were collected using a high volume sampler equipped with an impactor to separate coarse- and fine-mode aerosols. The concentrations of surfactants, as methylene blue active substance and disulphine blue active substance, were analysed using colorimetric method. Ion chromatography was employed to determine the ionic compositions. Principal component analysis combined with multiple linear regression was used to identify and quantify the sources of atmospheric surfactants. The results showed that the surfactants in tropical coastal environments are actively generated from natural and anthropogenic origins. Sea spray (generated from sea-surface microlayers) was found to be a major contributor to surfactants in both aerosol sizes. Meanwhile, the anthropogenic sources (motor vehicles/biomass burning) were predominant contributors to atmospheric surfactants in fine-mode aerosols.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

References

  1. Abdul-Wahab SA, Bakheit CS, Al-Alawi SM (2005) Principal component and multiple regression analysis in modelling of ground-level ozone and factors affecting its concentrations. Environ Model Softw 20:1263–1271

    Article  Google Scholar 

  2. Albrecht BA (1989) Aerosols, cloud microphysics, and fractional cloudiness. Science 245:1227–1230

    CAS  Article  Google Scholar 

  3. Aller JY, Kuznetsova MR, Jahns CJ, Kemp PF (2005) The sea surface microlayer as a source of viral and bacteria enrichment in marine aerosols. J Aerosol Sci 36:801–812

    CAS  Article  Google Scholar 

  4. Aydin-Onen S, Kocak F, Kucuksezgin F (2012) Evaluation of spatial and temporal variations of inorganic nutrient species in the eastern Aegean Sea waters. Mar Pollut Bull 64:2849–2856

    CAS  Article  Google Scholar 

  5. Becagli S, Ghedini C, Peeters S, Rottiers A, Traversi R, Udisti R, Chiari M, Jalba A, Despiau S, Dayan U, Temara A (2011) MBAS (methylene blue active substances) and LAS (linear alkylbenzene sulphonates) in Mediterranean coastal aerosols: sources and transport processes. Atmos Environ 45:6788–6801

    CAS  Article  Google Scholar 

  6. Bingöl D, Ay Ü, Karayünlü Bozbaş S, Uzgören N (2013) Chemometric evaluation of the heavy metals distribution in waters from the Dilovası region in Kocaeli, Turkey. Mar Pollut Bull 68:134–139

    Article  Google Scholar 

  7. Blanchard DC (1964) Sea-to-air transport of surface active material. Science 146:396–397

    CAS  Article  Google Scholar 

  8. Blanchard DC (1975) Bubbles scavenging and the water to air transfer of organic material in the sea. Adv Chem Ser 145:360–387

    CAS  Article  Google Scholar 

  9. Blanchard DC, Woodcock AH (1957) Bubble formation and modification in the sea and its meteorological significance. Tellus 9:145–158

    Article  Google Scholar 

  10. Calvo AI, Alves C, Castro A, Pont V, Vicente AM, Fraile R (2013) Research on aerosol sources and chemical composition: past, current and emerging issues. Atmos Res 120–121:1–28

    Article  Google Scholar 

  11. Cheng ZL, Lam KS, Chan LY, Wang T, Cheng KK (2000) Chemical characteristics of aerosols at coastal station in Hong Kong. I. Seasonal variation of major ions, halogens and mineral dusts between 1995 and 1996. Atmos Environ 34:2771–2783

    CAS  Article  Google Scholar 

  12. Chow JC, Watson JG, Edgerton SA, Vega E (2002) Chemical composition of PM2.5 and PM10 in Mexico City during winter. Sci Total Environ 287:177–201

    CAS  Article  Google Scholar 

  13. Cincinelli A, Stortini AM, Perugini M, Checchini L, Lepri L (2001) Organic pollutants in sea-surface microlayer and aerosol in the coastal environment of Leghorn—(Tyrrhenian Sea). Mar Chem 76:77–98

    CAS  Article  Google Scholar 

  14. Cirelli AF, Ojeda C, Castro MJL, Salgot M (2008) Surfactant in sludge-amended agricultural soils: a review. Environ Chem Lett 6:135–148

    Article  Google Scholar 

  15. Cserháti T, Forgács E, Oros G (2002) Biological activity and environmental impact of anionic surfactants. Environ Int 28:337–348

    Article  Google Scholar 

  16. Cunliffe M, Engel A, Frka S, Gašparović B, Guitart C, Murrell JC, Salter M, Stolle C, Upstill-Goddard R, Wurl O (2013) Sea surface microlayers: a unified physicochemical and biological perspective of the air–ocean interface. Prog Oceanogr 109:104–116

    Article  Google Scholar 

  17. Cusack M, Peréz N, Pey J, Alastuey A, Querol X (2013) Source apportionment of fine PM and sub-micron particle number concentrations at a regional background site in the western Mediterranian: 2.5 year study. Atmos Chem Phys 13:5173–5187

    CAS  Article  Google Scholar 

  18. De Leeuw G (1999) Sea spray aerosol production from waves breaking in the surf zone. J Aerosol Sci 30:63–64

    Article  Google Scholar 

  19. Despiau S, Cougnenc S, Resch F (1996) Concentrations and size distributions of aerosol particles in coastal zone. J Aerosol Sci 27:403–415

    CAS  Article  Google Scholar 

  20. Dominick D, Juahir H, Latif MT, Zain SM, Aris AZ (2012) Spatial assessment of air quality patterns in Malaysia using multivariate analysis. Atmos Environ 60:172–181

    CAS  Article  Google Scholar 

  21. Facchini MC, Fuzzi S, Zappoli S, Andracchio A, Gelencsér A, Kiss G, Krivácsy Z, Mészáros E, Hansson H-C, Alsberg T, Zebühr Y (1999) Partitioning of the organic aerosol component between fog droplets and interstitial air. J Geophys Res D 104:26821–26832

    CAS  Article  Google Scholar 

  22. Finlayson-Pitts BJ, Pitts JN Jr (2000) Chemistry of the upper and lower atmosphere: theory, experiments, and applications. Wiley, New York

    Google Scholar 

  23. Frka S, Dautovic J, Kozarac Z, Cosovic B, Hoffer A (2012) Surface-active substance in atmospheric aerosol: an electrochemical approach. Tellus B: Chem Phys Meteorol. doi:10.3402/tellusb.v64i0.18490

    Google Scholar 

  24. Gašparović B, Ćosović B (2003) Surface-active properties of organic matter in the North Adriatic Sea. Estuar Coast Shelf Sci 58:555–566

    Article  Google Scholar 

  25. Gašparović B, Plavšić M, Ćosović B, Saliot A (2007) Organic matter characterization in the sea surface microlayers in the surbartic Norwegian Fjords region. Mar Chem 105:1–14

    Article  Google Scholar 

  26. Guidi L, Lorenzini L, Soldatini GF (1988) Phytotoxicity of sea-water aerosols on the forest plants with the special reference to the role of surfactants. Environ Exp Bot 28:85–94

    CAS  Article  Google Scholar 

  27. Harvey GW (1996) Microlayer collection form the sea surface: a new method and initial results. Limnol Oceanogr 11:608–613

    Article  Google Scholar 

  28. Hogarh JN, Seike N, Kobara Y, Habib A, Nam J-J, Lee J-S, Li Q, Liu X, Li J, Zhang G, Masunaga S (2012) Passive air monitoring of PCBs and PCNs across East Asia: a comprehensive congener evaluation for source characterization. Chemosphere 86:718–726

    CAS  Article  Google Scholar 

  29. Kang J, Cho BC, Lee C-B (2010) Atmospheric transport of water-soluble ions (NO3 , NH4 + and NSS-SO4 2−) to the southern East Sea (Sea of Japan). Sci Total Environ 408:2369–2377

    CAS  Article  Google Scholar 

  30. Karnae S, John K (2011) Source apportionment of fine particulate matter measured in an industrialized coastal urban area of South Texas. Atmos Environ 45:3769–3776

    CAS  Article  Google Scholar 

  31. Khan MF, Hirano K, Masunaga S (2010a) Quantifying the sources of hazardous elements of suspended particulate matter aerosol collected in Yokohama, Japan. Atmos Environ 44:2646–2657

    CAS  Article  Google Scholar 

  32. Khan MF, Shirasuna Y, Hirano K, Masunaga S (2010b) Characterization of PM2.5, PM2.5–10 and PM10 in ambient air, Yokohama, Japan. Atmos Res 96:159–172

    CAS  Article  Google Scholar 

  33. Kim E, Hopke PK (2008) Source characterization of ambient fine particles at multiples sites in the Seattle area. Atmos Environ 42:6047–6056

    CAS  Article  Google Scholar 

  34. Kuzu SL, Saral A, Demir S, Summak G, Demir G (2013) A detailed investigation of ambient aerosol composition and size distribution in an urban atmosphere. Environ Sci Pollut Res Int 20:2556–2568

    CAS  Article  Google Scholar 

  35. Latif MT, Brimblecombe P (2004) Surfactants in atmospheric aerosol. Environ Sci Technol 38:6501–6505

    CAS  Article  Google Scholar 

  36. Latif MT, Brimblecombe P, Ramli NA, Sentian J, Sukhapan J, Sulaiman N (2005) Surfactants in South East Asian aerosols. Environ Chem 2:198–204

    CAS  Article  Google Scholar 

  37. Latif MT, Anuwar NY, Srithawirat T, Razak IS, Ramli NA (2011) Composition of levoglucosan and surfactants in atmospheric aerosols from biomass burning. Aerosol Air Qual Res 2011:837–845

    Google Scholar 

  38. Latif MT, Wanfi L, Hanif N, Roslan R, Ali M, Mushrifah I (2012) Composition and distribution of surfactants around Lake Chini, Malaysia. Environ Monit Assess 184:1325–1334

    CAS  Article  Google Scholar 

  39. Lin P, Huang X-F, He L-Y, Zhen Yu J (2010) Abundance and size distribution of HULIS in ambient aerosols at a rural site in South China. J Aerosol Sci 41:74–87

    CAS  Article  Google Scholar 

  40. Liu CW, Lin KH, Kuo YM (2003) Application of factor analysis in the assesment of ground water quality in Blackforest disease area in Taiwan. Sci Total Environ 313:77–89

    CAS  Article  Google Scholar 

  41. Marcomini A, Pojana G, Giacometti A, Oppo C (2001) Aerosolization of an anionic surfactant (LAS) and dissolved organic carbon (DOC) under laboratory conditions. Chemosphere 44:257–262

    CAS  Article  Google Scholar 

  42. Masiol M, Squizatto S, Ceccato D, Rampazzo G, Pavoni B (2012) A chemomatric approach to determine local and regional sources of PM10 and its geochemical composition in a coastal area. Atmos Environ 54:127–133

    CAS  Article  Google Scholar 

  43. Mcmurdo CJ, Ellis DA, Webster E, Butler J, Christensen RD, Reid LK (2008) Aerosol enrichment of the surfactant PFO and mediation of the water–air transport of gaseous PFOA. Environ Sci Technol 42:3969–3974

    CAS  Article  Google Scholar 

  44. Moreno T, Karanasiou A, Amato F, Lucarelli F, Nava S, Calzolai G, Chiari M, Coz E, Artíñano B, Lumbreras J, Borge R, Boldo E, Linares C, Alastuey A, Querol X, Gibbons W (2013) Daily and hourly sourcing of metallic and mineral dust in urban air contaminated by traffic and coal-burning emissions. Atmos Environ 68:33–44

    CAS  Article  Google Scholar 

  45. Murphy DM, Anderson JL, Qulnn PK, Mclnns LM, Brechtel FJ, Kreidenwels SM, Middlebrook AM, Posfai M, Thomson DS, Buseck PR (1998) Influence of sea-salt on aerosol radiative properties in the Southern Ocean boundary layer. Nature 392:62–65

    CAS  Article  Google Scholar 

  46. O'dowd CD, Hoffmann T (2005) Coastal new particles formation: a review of the current state-of-art. Environ Chem 2:245–255

    Article  Google Scholar 

  47. O'dowd CD, Facchini MC, Cavalli F, Ceburnis D, Mircea M, Decesari S, Fuzzi S, Young JY, Putaud JP (2004) Biogenically driven organic contribution to marine aerosol. Nature 431:676–680

    Article  Google Scholar 

  48. Oppo C, Bellandi S, Degli IN, Stortini AM, Loglio G, Schiavuta E, Cini R (1999) Surfactant components of marine organic matter as agents for biogeochemical fractionation and pollutant transport via marine aerosols. Mar Chem 63:235–253

    CAS  Article  Google Scholar 

  49. Paur HR, Cassee FR, Teeguarden J, Fissan H, Diabate S (2011) In-vitro cell exposure studies for the assessment of nanoparticle toxocity in the lung—a dialog between aerosol science and biology. J Aerosol Sci 42:668–692

    CAS  Article  Google Scholar 

  50. Pöschl U (2005) Atmospheric aerosols: composition, transformation, climate and health effects. Angew Chem Int Ed 44:7520–7540

    Article  Google Scholar 

  51. Roslan RN, Hanif NM, Othman MR, Azmi WNFW, Yan XX, Ali M, CaR M, Latif MT (2010) Surfactants in the sea-surface microlayer and their contribution to atmospheric aerosols around coastal areas of the Malaysian peninsula. Mar Pollut Bull 60:1584–1590

    CAS  Article  Google Scholar 

  52. Roth B, Okada K (1998) On the modification of sea-salt particles in the coastal atmosphere. Atmos Environ 32:1555–1569

    CAS  Article  Google Scholar 

  53. Ryu SY, Kwon BG, Kim YJ, Kim HH, Chun KJ (2007) Characteristics of biomass burning aerosol and its impact on regional air quality in the summer of 2003 at Gwangju, Korea. Atmos Res 84:362–373

    CAS  Article  Google Scholar 

  54. Scott MJ, Jones MN (2000) The biodegradation of surfactants in the environment. Biochim Biophys Acta 1508:235–251

    CAS  Article  Google Scholar 

  55. Shulman ML, Jacobson MC, Carlson RJ, Synovec RE, Young TE (1996) Dissolution behavior and surface tension effects of organic compounds in nucleating cloud droplets. Geophys Res Lett 23:277–280

    CAS  Article  Google Scholar 

  56. Song J, He L, Peng PA, Zhao J, Ma S (2012) Chemical and isotopic composition of humic-like substances (HULIS) in ambient aerosols in Guangzhou, South China. Aerosol Sci Technol 46:533–546

    CAS  Article  Google Scholar 

  57. Sukhapan J, Brimblecombe P (2002) Ionic surface active compounds in atmospheric aerosols. Sci World J 2:1138–1146

    CAS  Article  Google Scholar 

  58. Thurston GD, Spengler JD (1985) A quantitative assessment of source contributions to inhalable particulate matter pollutant in Metropolitan Boston. Atmos Environ 19:9–25

    CAS  Article  Google Scholar 

  59. Toledo V, Almeida Júnior P, Quiterio S, Arbilla G, Moreira A, Escaleira V, Moreira J (2008) Evaluation of levels, sources and distribution of toxic elements in PM10 in a suburban industrial region, Rio de Janeiro, Brazil. Environ Monit Assess 139:49–59

    CAS  Article  Google Scholar 

  60. Tsitouridou R, Voutsa D, Kouimtzis T (2003) Ionic composition of PM10 in the area of Thessaloniki, Greece. Chemosphere 52:883–891

    CAS  Article  Google Scholar 

  61. Udisti R, Dayan U, Becagli S, Busetto M, Frosini D, Legrand M, Lucarelli F, Preunkert S, Severi M, Traversi R, Vitale V (2012) Sea spray aerosol in central Antarctica. Present atmospheric behavior and implications for paleoclimatic reconstructions. Atmos Environ 52:109–120

    CAS  Article  Google Scholar 

  62. Ul-Saufie AZ, Yahaya AS, Ramli NA, Rosaida N, Hamid HA (2013) Future daily PM10 concentrations prediction by combining regression models and feedforward backpropagation models with principal component analysis (PCA). Atmos Environ. doi:10.1016/j.atmosenv.2013.05.07

    Google Scholar 

  63. Vojvodic V, Ćosović B (1996) Fractionation of surface active substances on the XAD-8 resin; Adriatic Sea samples and phytoplankton culture media. Mar Chem 54:119–133

    CAS  Article  Google Scholar 

  64. Wahid NBA, Latif MT, Suratman S (2013) Composition and source apportionment of surfactants in atmospheric aerosols of urban and semi-urban areas in Malaysia. Chemosphere 91:1508–1516

    CAS  Article  Google Scholar 

  65. Wang H, Shooter D (2001) Water soluble ions of atmospheric aerosols in three New Zealand cities: seasonal changes and sources. Atmos Environ 35:6031–6040

    CAS  Article  Google Scholar 

  66. Wu C-F, Larson TV, Wu S-Y, Williamson J, Westberg HH, Liu L-JS (2007) Source apportionment of PM2.5 and selected hazardous air pollutants in Seattle. Sci Total Environ 386:42–52

    CAS  Article  Google Scholar 

  67. Wurl O, Miller L, Röttgers R, Vagle S (2009) The distribution and fate of surface-active substances in the sea-surface microlayer and water column. Mar Chem 115:1–9

    CAS  Article  Google Scholar 

  68. Wurl O, Wurl E, Miller L, Johnson K, Vagla S (2011) Formation and global distribution of sea-surface microlayer. Biogeosciences 8:121–135

    CAS  Article  Google Scholar 

  69. Ying GG (2006) Fate, behavior and effects of surfactants and their degradation products in the environment. Environ Int 32:417–431

    CAS  Article  Google Scholar 

  70. Zaghden H, Kallel M, Elleuch B, Oudot J, Saliot A (2007) Source and distribution of aliphatic and polycyclic aromatic hydrocarbons in sediments of Sfax, Tunisia, Mediterranean Sea. Mar Chem 105:70–89

    CAS  Article  Google Scholar 

Download references

Acknowledgement

This study was funded by the Ministry of Science, Technology and Innovation of Malaysia (MOSTI) research grant, E-Science Fund 04-01-02-SF0752. We would like to thank Mrs. Caroline Brimblecombe, Ms. K Alexander and Ms. Fatimah Ahamad for proof reading this manuscript.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Mohd Talib Latif.

Additional information

Responsible editor: Constantini Samara

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Mustaffa, N.I.H., Latif, M.T., Ali, M.M. et al. Source apportionment of surfactants in marine aerosols at different locations along the Malacca Straits. Environ Sci Pollut Res 21, 6590–6602 (2014). https://doi.org/10.1007/s11356-014-2562-z

Download citation

Keywords

  • Surfactants
  • Source apportionment
  • Marine aerosol
  • Sea-surface microlayer