Environmental Science and Pollution Research

, Volume 21, Issue 19, pp 11126–11134 | Cite as

Degradation of industrial surfactants by photocatalysis combined with ozonation

  • Zoltán Zsilák
  • Orsolya Fónagy
  • Erzsébet Szabó-Bárdos
  • Ottó HorváthEmail author
  • Krisztián Horváth
  • Péter Hajós
Photocatalysis: new highlights from JEP 2013


The efficiency of titanium dioxide-mediated photocatalytic degradation of pollutants can be enhanced by combination with another advanced oxidation procedure such as ozonation. Mineralization of hydroxy- and dihydroxybenzenesulfonate based on these methods, both individually and combined, was investigated by monitoring the total organic carbon content, sulfate concentration, pH, high-performance liquid chromatography as well as the absorption spectral changes. The mineralization efficiency of the combined procedure significantly exceeded the sum of those of the individual techniques. The comparison of the disappearance of the starting material and the formation of the sulfate ions indicates that desulfonation is not the primary step of the degradation. Moreover, in the case of the combined method, ring cleavage, and thus, partial mineralization can occur without desulfonation. Efficient degradation of other, widely used industrial surfactants, such as alkylbenzene sulfonates and alkyl ether sulfates, was also achieved by heterogeneous photocatalysis combined with ozonation, offering an applicable method for the removal of these pollutants.


Hydroxy- and dihydroxybenzenesulfonate Alkylbenzene sulfonates Alkyl ether sulfates TiO2-based photocatalysis Oxidative degradation Ozonation Synergy 



This work was supported by the Hungarian Scientific Research Fund (OTKA No. K101141 and K81843) and by the European Union and the State of Hungary, co-financed by the European Social Fund (TÁMOP-4.2.2.A-11/1/KONV-2012-0071 and in case of Orsolya Fónagy’s personal support in the framework of TÁMOP-4.2.4.A/2-11/1-2012-0001 ‘National Excellence Program’).

Supplementary material

11356_2014_2527_MOESM1_ESM.pdf (133 kb)
ESM 1 (PDF 133 kb)


  1. Abu-Hassan MA, Kim JK, Metcalfe IS, Mantzavinos D (2006) Kinetics of low frequency sonodegradation of linear alkylbenzene sulfonate solutions. Chemosphere 62:749–755CrossRefGoogle Scholar
  2. Agustina TE, Ang HM, Vareek VK (2005) A review of synergistic effect of photocatalysis and ozonation on wastewater treatment. J Photochem Photobiol C Rev 6:264–273CrossRefGoogle Scholar
  3. Amano R, Tezuka M (2006) Mineralization of alkylbenzenesulfonates in water by means of contact glow discharge electrolysis. Water Res 40:1857–1863CrossRefGoogle Scholar
  4. Amano R, Tomizawa S, Tezuka M (2004) Mineralization of aqueous benzenesulfonates by contact glow discharge electrolysis. Electrochem 72:836–838Google Scholar
  5. Arslan-Alaton I, Yalabik AB, Olmez-Hanci T (2010) Development of experimental design models to predict photo-fenton oxidation of a commercially important naphthalene sulfonate and its organic carbon content. Chem Eng J 165:597–606CrossRefGoogle Scholar
  6. Avetta P, Bianco Prevot A, Fabbri D, Montoneri E, Tomasso L (2012) Photodegradation of naphthalene sulfonic compounds in the presence of a bio-waste derived sensitizer. Chem Eng J 197:193–198CrossRefGoogle Scholar
  7. Brilon C, Beckmann W, Knackmuss HJ (1981) Catabolism of naphthalenesulfonic acids by Pseudomonas sp. A3 and Pseudomonas sp. C22. Appl Environ Microbiol 42:44–55Google Scholar
  8. Cain RB (1981) In: Leisinger T, Cook AM, Hutter R, Nuesch J (eds) Microbial metabolism of xenobiotics and recalcitrant compounds. Academic Press, London, pp 325–370Google Scholar
  9. Fabbri D, Bianco Prevot A, Pramauro E (2006) Effect of surfactant microstructures on photocatalytic degradation of phenol and chlorophenols. Appl Catal B Environ 62:21–27CrossRefGoogle Scholar
  10. Faria PCC, Órfão JJM, Pereira MFR (2008) Catalytic ozonation of sulfonated aromatic compounds in the presence of activated carbon. Appl Catal B Environ 83:150–159CrossRefGoogle Scholar
  11. Fernández J, Riu J, Garcı́a-Calvo E, Rodrı́guez A, Fernández-Alba AR, Barceló D (2004) Determination of photodegradation and ozonation by products of linear alkylbenzene sulfonates by liquid chromatography and ion chromatography under controlled laboratory experiments. Talanta 64:69–79CrossRefGoogle Scholar
  12. Greim H, Ahlers J, Bias R, Broecker B, Hollander H, Gelbke HP, Klimisch HJ, Mangelsdorf I, Paetz A, Schong N, Stropp G, Vogel R, Weber C, Ziegler-Skylakakis K, Bayer E (1994) Toxicity and ecotoxicity of sulfonic acids: structure activity relationship. Chemosphere 28:2203–2236CrossRefGoogle Scholar
  13. Hashim MA, Kulandai J, Hassan RS (1992) Biodegradability of branched alkybenzene sulfonates. J Chem Tech Biotech 54:207–214CrossRefGoogle Scholar
  14. Hoffmann MR, Martin ST, Choi W, Bahnemann DW (1995) Environmental applications of semiconductor photocatalysis. Chem Rev 95:69–96CrossRefGoogle Scholar
  15. Horváth O, Huszánk R (2003) Degradation of surfactants by hydroxyl radicals photogenerated from hydroxoiron(III) complexes. Photochem Photobiol Sci 2:960–966CrossRefGoogle Scholar
  16. Horváth O, Bodnár E, Hegyi J (2005) Photoassisted oxidative degradation of surfactants and simultaneous reduction of metals in titanium dioxide dispersions. Colloid Surf A: Physicochem Eng Asp 265:135–140CrossRefGoogle Scholar
  17. Isobe KO, Zakaria MP, Chiem NH, Minh LY, Prudente M, Boonyatumanond R, Saha M, Sarkar S, Takada H (2004) Distribution of linear alkylbenzenes (LABs) in riverine and coastal environments in South and Southeast Asia. Water Res 38:2449–2459CrossRefGoogle Scholar
  18. Kirk AD, Namasivayam C (1983) Errors in ferrioxalate actinometry. Anal Chem 55:2428–2429CrossRefGoogle Scholar
  19. Li L, Zhu W, Chen L, Zhang P, Chen Z (2005) Photocatalytic ozonation of dibutyl phthalate over TiO2 film. J Photochem Photobio A Chem 175:172–177CrossRefGoogle Scholar
  20. Oyama T, Yanagisawa I, Takeuchi M, Koike T, Serpone N, Hidaka H (2009) Remediation of simulated aquatic sites contaminated with recalcitrant substrates by TiO2/ozonation under natural sunlight. Appl Catal B Environ 91:242–246CrossRefGoogle Scholar
  21. Patsoura A, Kondarides DI, Verykios EX (2007) Photocatalytic degradation of organic pollutants with simultaneous production of hydrogen. Catal Today 124:94–102CrossRefGoogle Scholar
  22. Rabek JF (1982) Experimental methods in photochemistry and photophysics. Wiley, New York, pp 944–946Google Scholar
  23. Ravera M, Ciccarelli C, Gianotti V, Scorz S, Osella D (2004) Electro-assisted methods for waste destruction: silver(II) and peroxydisulfate reagents in the electrochemically mediated oxidation of polyaromatic sulfonates. Chemosphere 57:587–594CrossRefGoogle Scholar
  24. Ravera M, Buico A, Gosetti F, Cassino C, Musso D, Osella D (2009) Oxidative degradation of 1,5-naphthalenedisulfonic acid in aqueous solutions by microwave irradiation in the presence of H2O2. Chemosphere 74:1309–1314CrossRefGoogle Scholar
  25. Ravera M, Musso D, Gosetti F, Cassino C, Gamalero E, Osella D (2010) Oxidative degradation of 1,5-naphthalenedisulfonic acid in aqueous solutions: non-catalytic remediation by UV-photolysis in the absence and presence of H2O2. Chemosphere 79:144–148CrossRefGoogle Scholar
  26. Reemtsma T (1996) Methods of analysis of polar aromatic sulfonates from aquatic environments. J Chromatogr A 733:473–489CrossRefGoogle Scholar
  27. Salvador P (2007) On the nature of photogenerated radical species active in the oxidative degradation of dissolved pollutants with TiO2 aqueous suspensions: a revision in the light of the electronic structure of adsorbed water. J Phys Chem C 111:17038–17043CrossRefGoogle Scholar
  28. Sangchakr B, Hisanaga T, Tanaka K (1995) Photocatalytic degradation of sulfonated aromatics in aqueous TiO2 suspension. J Photochem Photobiol A Chem 85:187–190CrossRefGoogle Scholar
  29. Szabó-Bárdos E (2013) PhD dissertation, University of Pannonia, VeszprémGoogle Scholar
  30. Szabó-Bárdos E, Czili H, Horváth A (2003) Photocatalytic oxidation of oxalic acid enhanced by silver deposition on a TiO2 surface. J Photochem Photobiol A Chem 154:195–201CrossRefGoogle Scholar
  31. Szabó-Bárdos E, Czili H, Megyery-Balog K, Horváth A (2004) Photocatalytic oxidation of oxalic acid enhanced by silver and copper deposition on TiO2 surface. Progr Colloid Polym Sci 125:42–48Google Scholar
  32. Szabó-Bárdos E, Zsilák Z, Horváth O (2008a) Photocatalytic degradation of anionic surfactant in titanium dioxide suspension. Progr Colloid Polym Sci 135:21–28Google Scholar
  33. Szabó-Bárdos E, Zsilák Z, Lendvay G, Horváth O, Markovics O, Hoffer A, Törő N (2008b) Photocatalytic degradation of 1,5-naphthalenedisulfonate on colloidal titanium dioxide. J Phys Chem B 112:14500–14508CrossRefGoogle Scholar
  34. Szabó-Bárdos E, Markovics O, Horváth O, Törő N, Kiss G (2011) Photocatalytic degradation of benzenesulfonate on colloidal titanium dioxide. Water Res 45:1617–1628CrossRefGoogle Scholar
  35. Takada H, Ishiwatari R (1990) Biodegradation experiments of linear alkylbenzenes (LABs): isomeric composition LABs as an indicator of the degree of LAB degradation in the aquatic environment. Environ Sci Technol 24:86–91CrossRefGoogle Scholar
  36. Tjahjanto RT, Galuh RD, Wardani S (2012) Ozone determination: a comparison of quantitative analysis methods. J Pure App Chem Res 1:18–25Google Scholar
  37. Tully PS (1997) In: Grant MH (ed) Kirk–Othmer encyclopedia of chemical technology, vol 23, 4th edn. Wiley, New York, p 194Google Scholar
  38. Wittich R, Rast HG, Knackmuss HJ (1988) Degradation of naphthalene-2,6- and naphthalene-1,6-disulfonic acid by a Moraxella sp. Appl Environ Microbiol 54:1842–1844Google Scholar
  39. Zhang T, Oyama T, Horikoshi S, Zhao J, Serpone N, Hidaka H (2003) Photocatalytic decomposition of the sodium dodecylbenzene sulfonate surfactant in aqueous titania suspensions exposed to highly concentrated solar radiation and effects of additives. Appl Catal B Environ 42:13–24CrossRefGoogle Scholar
  40. Zsilák Z, Szabó-Bárdos E, Fónagy O, Horváth O, Horváth K, Hajós P (2013) Degradation of benzenesulfonate by heterogeneous photocatalysis combined with ozonation. Catal Today. doi: 10.1016/j.cattod.2013.10.039 Google Scholar
  41. Zürrer D, Cook AM, Leisinger T (1987) Microbial desulfonation of substituted naphthalenesulfonic acids and benzenesulfonic acids. Appl Environ Microbiol 53:1459–1463Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Zoltán Zsilák
    • 1
  • Orsolya Fónagy
    • 1
  • Erzsébet Szabó-Bárdos
    • 1
  • Ottó Horváth
    • 1
    Email author
  • Krisztián Horváth
    • 2
  • Péter Hajós
    • 2
  1. 1.Department of General and Inorganic Chemistry, Institute of ChemistryUniversity of PannoniaVeszprémHungary
  2. 2.Department of Analytical Chemistry, Institute of ChemistryUniversity of PannoniaVeszprémHungary

Personalised recommendations