Skip to main content
Log in

Degradation of industrial surfactants by photocatalysis combined with ozonation

  • Photocatalysis: new highlights from JEP 2013
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

The efficiency of titanium dioxide-mediated photocatalytic degradation of pollutants can be enhanced by combination with another advanced oxidation procedure such as ozonation. Mineralization of hydroxy- and dihydroxybenzenesulfonate based on these methods, both individually and combined, was investigated by monitoring the total organic carbon content, sulfate concentration, pH, high-performance liquid chromatography as well as the absorption spectral changes. The mineralization efficiency of the combined procedure significantly exceeded the sum of those of the individual techniques. The comparison of the disappearance of the starting material and the formation of the sulfate ions indicates that desulfonation is not the primary step of the degradation. Moreover, in the case of the combined method, ring cleavage, and thus, partial mineralization can occur without desulfonation. Efficient degradation of other, widely used industrial surfactants, such as alkylbenzene sulfonates and alkyl ether sulfates, was also achieved by heterogeneous photocatalysis combined with ozonation, offering an applicable method for the removal of these pollutants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Abu-Hassan MA, Kim JK, Metcalfe IS, Mantzavinos D (2006) Kinetics of low frequency sonodegradation of linear alkylbenzene sulfonate solutions. Chemosphere 62:749–755

    Article  CAS  Google Scholar 

  • Agustina TE, Ang HM, Vareek VK (2005) A review of synergistic effect of photocatalysis and ozonation on wastewater treatment. J Photochem Photobiol C Rev 6:264–273

    Article  CAS  Google Scholar 

  • Amano R, Tezuka M (2006) Mineralization of alkylbenzenesulfonates in water by means of contact glow discharge electrolysis. Water Res 40:1857–1863

    Article  CAS  Google Scholar 

  • Amano R, Tomizawa S, Tezuka M (2004) Mineralization of aqueous benzenesulfonates by contact glow discharge electrolysis. Electrochem 72:836–838

    CAS  Google Scholar 

  • Arslan-Alaton I, Yalabik AB, Olmez-Hanci T (2010) Development of experimental design models to predict photo-fenton oxidation of a commercially important naphthalene sulfonate and its organic carbon content. Chem Eng J 165:597–606

    Article  CAS  Google Scholar 

  • Avetta P, Bianco Prevot A, Fabbri D, Montoneri E, Tomasso L (2012) Photodegradation of naphthalene sulfonic compounds in the presence of a bio-waste derived sensitizer. Chem Eng J 197:193–198

    Article  CAS  Google Scholar 

  • Brilon C, Beckmann W, Knackmuss HJ (1981) Catabolism of naphthalenesulfonic acids by Pseudomonas sp. A3 and Pseudomonas sp. C22. Appl Environ Microbiol 42:44–55

    CAS  Google Scholar 

  • Cain RB (1981) In: Leisinger T, Cook AM, Hutter R, Nuesch J (eds) Microbial metabolism of xenobiotics and recalcitrant compounds. Academic Press, London, pp 325–370

    Google Scholar 

  • Fabbri D, Bianco Prevot A, Pramauro E (2006) Effect of surfactant microstructures on photocatalytic degradation of phenol and chlorophenols. Appl Catal B Environ 62:21–27

    Article  CAS  Google Scholar 

  • Faria PCC, Órfão JJM, Pereira MFR (2008) Catalytic ozonation of sulfonated aromatic compounds in the presence of activated carbon. Appl Catal B Environ 83:150–159

    Article  CAS  Google Scholar 

  • Fernández J, Riu J, Garcı́a-Calvo E, Rodrı́guez A, Fernández-Alba AR, Barceló D (2004) Determination of photodegradation and ozonation by products of linear alkylbenzene sulfonates by liquid chromatography and ion chromatography under controlled laboratory experiments. Talanta 64:69–79

    Article  Google Scholar 

  • Greim H, Ahlers J, Bias R, Broecker B, Hollander H, Gelbke HP, Klimisch HJ, Mangelsdorf I, Paetz A, Schong N, Stropp G, Vogel R, Weber C, Ziegler-Skylakakis K, Bayer E (1994) Toxicity and ecotoxicity of sulfonic acids: structure activity relationship. Chemosphere 28:2203–2236

    Article  CAS  Google Scholar 

  • Hashim MA, Kulandai J, Hassan RS (1992) Biodegradability of branched alkybenzene sulfonates. J Chem Tech Biotech 54:207–214

    Article  CAS  Google Scholar 

  • Hoffmann MR, Martin ST, Choi W, Bahnemann DW (1995) Environmental applications of semiconductor photocatalysis. Chem Rev 95:69–96

    Article  CAS  Google Scholar 

  • Horváth O, Huszánk R (2003) Degradation of surfactants by hydroxyl radicals photogenerated from hydroxoiron(III) complexes. Photochem Photobiol Sci 2:960–966

    Article  Google Scholar 

  • Horváth O, Bodnár E, Hegyi J (2005) Photoassisted oxidative degradation of surfactants and simultaneous reduction of metals in titanium dioxide dispersions. Colloid Surf A: Physicochem Eng Asp 265:135–140

    Article  Google Scholar 

  • Isobe KO, Zakaria MP, Chiem NH, Minh LY, Prudente M, Boonyatumanond R, Saha M, Sarkar S, Takada H (2004) Distribution of linear alkylbenzenes (LABs) in riverine and coastal environments in South and Southeast Asia. Water Res 38:2449–2459

    Article  CAS  Google Scholar 

  • Kirk AD, Namasivayam C (1983) Errors in ferrioxalate actinometry. Anal Chem 55:2428–2429

    Article  CAS  Google Scholar 

  • Li L, Zhu W, Chen L, Zhang P, Chen Z (2005) Photocatalytic ozonation of dibutyl phthalate over TiO2 film. J Photochem Photobio A Chem 175:172–177

    Article  CAS  Google Scholar 

  • Oyama T, Yanagisawa I, Takeuchi M, Koike T, Serpone N, Hidaka H (2009) Remediation of simulated aquatic sites contaminated with recalcitrant substrates by TiO2/ozonation under natural sunlight. Appl Catal B Environ 91:242–246

    Article  CAS  Google Scholar 

  • Patsoura A, Kondarides DI, Verykios EX (2007) Photocatalytic degradation of organic pollutants with simultaneous production of hydrogen. Catal Today 124:94–102

    Article  CAS  Google Scholar 

  • Rabek JF (1982) Experimental methods in photochemistry and photophysics. Wiley, New York, pp 944–946

    Google Scholar 

  • Ravera M, Ciccarelli C, Gianotti V, Scorz S, Osella D (2004) Electro-assisted methods for waste destruction: silver(II) and peroxydisulfate reagents in the electrochemically mediated oxidation of polyaromatic sulfonates. Chemosphere 57:587–594

    Article  CAS  Google Scholar 

  • Ravera M, Buico A, Gosetti F, Cassino C, Musso D, Osella D (2009) Oxidative degradation of 1,5-naphthalenedisulfonic acid in aqueous solutions by microwave irradiation in the presence of H2O2. Chemosphere 74:1309–1314

    Article  CAS  Google Scholar 

  • Ravera M, Musso D, Gosetti F, Cassino C, Gamalero E, Osella D (2010) Oxidative degradation of 1,5-naphthalenedisulfonic acid in aqueous solutions: non-catalytic remediation by UV-photolysis in the absence and presence of H2O2. Chemosphere 79:144–148

    Article  CAS  Google Scholar 

  • Reemtsma T (1996) Methods of analysis of polar aromatic sulfonates from aquatic environments. J Chromatogr A 733:473–489

    Article  CAS  Google Scholar 

  • Salvador P (2007) On the nature of photogenerated radical species active in the oxidative degradation of dissolved pollutants with TiO2 aqueous suspensions: a revision in the light of the electronic structure of adsorbed water. J Phys Chem C 111:17038–17043

    Article  CAS  Google Scholar 

  • Sangchakr B, Hisanaga T, Tanaka K (1995) Photocatalytic degradation of sulfonated aromatics in aqueous TiO2 suspension. J Photochem Photobiol A Chem 85:187–190

    Article  CAS  Google Scholar 

  • Szabó-Bárdos E (2013) PhD dissertation, University of Pannonia, Veszprém

  • Szabó-Bárdos E, Czili H, Horváth A (2003) Photocatalytic oxidation of oxalic acid enhanced by silver deposition on a TiO2 surface. J Photochem Photobiol A Chem 154:195–201

    Article  Google Scholar 

  • Szabó-Bárdos E, Czili H, Megyery-Balog K, Horváth A (2004) Photocatalytic oxidation of oxalic acid enhanced by silver and copper deposition on TiO2 surface. Progr Colloid Polym Sci 125:42–48

    Google Scholar 

  • Szabó-Bárdos E, Zsilák Z, Horváth O (2008a) Photocatalytic degradation of anionic surfactant in titanium dioxide suspension. Progr Colloid Polym Sci 135:21–28

    Google Scholar 

  • Szabó-Bárdos E, Zsilák Z, Lendvay G, Horváth O, Markovics O, Hoffer A, Törő N (2008b) Photocatalytic degradation of 1,5-naphthalenedisulfonate on colloidal titanium dioxide. J Phys Chem B 112:14500–14508

    Article  Google Scholar 

  • Szabó-Bárdos E, Markovics O, Horváth O, Törő N, Kiss G (2011) Photocatalytic degradation of benzenesulfonate on colloidal titanium dioxide. Water Res 45:1617–1628

    Article  Google Scholar 

  • Takada H, Ishiwatari R (1990) Biodegradation experiments of linear alkylbenzenes (LABs): isomeric composition LABs as an indicator of the degree of LAB degradation in the aquatic environment. Environ Sci Technol 24:86–91

    Article  CAS  Google Scholar 

  • Tjahjanto RT, Galuh RD, Wardani S (2012) Ozone determination: a comparison of quantitative analysis methods. J Pure App Chem Res 1:18–25

    Google Scholar 

  • Tully PS (1997) In: Grant MH (ed) Kirk–Othmer encyclopedia of chemical technology, vol 23, 4th edn. Wiley, New York, p 194

    Google Scholar 

  • Wittich R, Rast HG, Knackmuss HJ (1988) Degradation of naphthalene-2,6- and naphthalene-1,6-disulfonic acid by a Moraxella sp. Appl Environ Microbiol 54:1842–1844

    CAS  Google Scholar 

  • Zhang T, Oyama T, Horikoshi S, Zhao J, Serpone N, Hidaka H (2003) Photocatalytic decomposition of the sodium dodecylbenzene sulfonate surfactant in aqueous titania suspensions exposed to highly concentrated solar radiation and effects of additives. Appl Catal B Environ 42:13–24

    Article  CAS  Google Scholar 

  • Zsilák Z, Szabó-Bárdos E, Fónagy O, Horváth O, Horváth K, Hajós P (2013) Degradation of benzenesulfonate by heterogeneous photocatalysis combined with ozonation. Catal Today. doi:10.1016/j.cattod.2013.10.039

    Google Scholar 

  • Zürrer D, Cook AM, Leisinger T (1987) Microbial desulfonation of substituted naphthalenesulfonic acids and benzenesulfonic acids. Appl Environ Microbiol 53:1459–1463

    Google Scholar 

Download references

Acknowledgments

This work was supported by the Hungarian Scientific Research Fund (OTKA No. K101141 and K81843) and by the European Union and the State of Hungary, co-financed by the European Social Fund (TÁMOP-4.2.2.A-11/1/KONV-2012-0071 and in case of Orsolya Fónagy’s personal support in the framework of TÁMOP-4.2.4.A/2-11/1-2012-0001 ‘National Excellence Program’).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ottó Horváth.

Additional information

Responsible editor: Philippe Garrigues

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 133 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zsilák, Z., Fónagy, O., Szabó-Bárdos, E. et al. Degradation of industrial surfactants by photocatalysis combined with ozonation. Environ Sci Pollut Res 21, 11126–11134 (2014). https://doi.org/10.1007/s11356-014-2527-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-014-2527-2

Keywords

Navigation